手機軟體(APP)辨識來電號碼之法律問題
科技法律研究所
102年03月25日
壹、事件摘要
我國自2005年開始推展行動電話「號碼可攜」服務,允許使用者將行動電話號碼申請移轉至另一業者。當號碼進行移轉時,為降低通話路由資訊傳遞之延遲、避免業者間轉換作業之延宕,通傳會指導各業者共同建立集中式資料庫,整合業者號碼管理資源,增進號碼可攜服務之效率。
日前有某非屬電信事業之業者,設計一款應用軟體,提供智慧型手機使用者下載、安裝後,可自行上傳通訊錄內之電話號碼,並透過電信事業之「號碼可攜集中式資料庫」,確認並辨識通訊錄內電話號碼所屬電信業者,將資訊回傳於使用者之智慧型手機。由於電話號碼屬於使用者個人資料之一環,本文以下分析「非電信事業與電信事業合作,於號碼可攜目的外,對資料庫內之資料進行蒐集、處理與利用是否違反個資法」之疑義。
貳、重點說明
「號碼可攜集中式資料庫」之設立主要目的在使不同業者間能準確的完成通訊的連接。然而,通傳會於96年10月亦有要求各電信業者設置查詢系統,提供用戶查詢欲致電之受話方是否係屬同家業者,進而協助用戶瞭解可能之通訊資費計算。換言之,通傳會認為辨識電信號碼屬於網內/外,屬於消費者規劃、理解其電信資費之權益。而目前亦有手機軟體可輔助消費者查詢相關資訊。
那麼,可否允許消費者進一步查詢致電對象所屬的業者呢?是否違反個人資料保護法的規定呢?
如前所述,通傳會認為使消費者瞭解電信號碼屬於網內/外,有助於資費理解之權益。我們更進一步說,允許查詢號碼所屬門號,不僅消費者可知悉資費之數額計算以決定是否致電,尚可決定是否使用相同電信業者之服務來打電話。我國行動電話普及率早已超過120%,有相當比例之消費者擁有二個以上之門號,若可揭露致電號碼所屬電信業者,使消費者可刻意選擇以網內門號致電,無疑具有相當實益。因此我們認為電信業者提供消費者以手機軟體查詢門號所屬業者,並不違反個資法上針對電信服務規範之「特定目的」(第133項:經營電信業務與電信加值網路業務)。一般的行動電話用戶,可透過電信業者查詢其所致電對象之門號所屬業者,則居於輔助地位的APP軟體,與用戶直接向業者查詢相比,實則無任何不同,應視為用戶之合理行為。
參、事件評析
個資法修正後,對於個人資料之保護更加的完善,但科技之發展使得個人資料之利用呈現多樣性,難以釐清某些利用行為是好是壞,然而本文基於鼓勵科技發展以及創新研發的立場,當面對某些個資利用情狀產生疑義時,應加以釐清其運用之情狀,避免在情境不明時,過度的擴張個資保護的界線,對市場發展以及消費者權益而言,並非好事。
當然另一方面而言,濫用科技便利的情形是存在的,如同2012年12月甫結束之ITU國際電信大會(WCIT2012),多國所簽署之修正電信管制規則第5B條所示,要求各國應努力採取必要措施,防止未經許可之濫發電子訊息,以減少對國際電信業務之影響。由於網路無遠弗屆,具騷擾性、浮濫發送之訊息,已從早期之垃圾電子郵件,擴及網路即時通訊軟體,不但時常造成使用者之困擾,甚至造成詐騙橫行。而這些狀況,光依靠個資法也是不足的,尚須主管機關對於濫用電信資源加以管制,從個人資料與電信資源等層面多管其下,方能維護良好之產業環境。
美國專利商標局(The United States Patent and Trademark Office, USPTO)於今年7月1日發布新聞稿,即專利審判及上訴委員會(Patent Trial and Appeal Board, PTAB)開始加速處理單方上訴的計畫。該計畫名為「快軌上訴試驗計畫(Fast-Track Appeals Pilot Program)」並於今年7月2日正式啟動。 根據該計畫,專利審判及上訴委員會上訴裁決的目標時間預計為該上訴被賦予快軌(即批准加速審查)之日起六個月內,此與美國專利商標局之期望相符。蓋目前單方面上訴的裁決時間平均約14個月,因此,對於申請該計畫的人來說,該計畫平均應將上訴程序縮短約8個月。惟申請該計畫所需費用為400美元,且被批准的申請案會被限制在每季125件,會計年度最多500件,預計施行一年。 美國商務部負責智慧財產權事務副部長兼USPTO局長Andrei Iancu表示:「這是USPTO史上首次,申請人將能夠加快專利審查和單方上訴的速度,從而能較典型申請案約一半的時間內,就其最重要的發明做出決定。」。PTAB首席法官Scott Boalick亦表示:「近年來,我們取得了長足的進步,將上訴待決時間從2015年的平均30個月減少到目前的平均14個月。很高興PTAB現在能夠為申請人提供更快的途徑,從而使發明人和企業能夠更快地將其專利發明商業化。」 值得一提的是,我國智慧財產局亦有發明專利加速審查(Accelerated Examination Program, AEP)及商標加速審查機制。而AEP更早於民國98年1月1日起試辦實施,依據申請事由之不同,智財局將在申請人齊備相關文件後,於6個月內或9個月內發出審查結果通知。
德國聯邦內政部提出「資訊科技安全法」(草案),保障關鍵基礎設施及資訊安全德國聯邦內政部繼與德國聯邦經濟暨能源部與交通暨數位基礎設施部共同擬定之「數位議程2014 - 2017」(Digitale Agenda 2014 – 2017)政策裏,於本年8月19日提出資訊科技安全法(草案)(IT-Sicherheitsgesetz)。該草案的提出目的為保障德國公民與企業使用的資訊系統安全,特別是在全國數位化進程中,攸關國家發展的關鍵基礎設施。德國內政部長de Maizière在新聞發表會上,宣稱要讓德國成為全球資訊科技系統及數位基礎設施安全的先驅與各國的模範。除外,亦欲藉此強化德國資訊科技安全企業的競爭力,提升外銷實力。 該草案的主要對象係關鍵基礎設施營運者(Kritische Infrastrukturbetreiber),例如在能源、資訊科技、電信、運輸和交通、醫療、水利、食品、金融與保險等領域的企業。「關鍵基礎設施」的定義並未涵蓋德國聯邦政府部門之間使用的數據通信系統。不過,究竟係在這些基礎設施領域的哪些企業該受到資訊科技法的約束,德國內政部將陸續與各相關部會研討後再以行政法規的方式明確表列出來。 關鍵基礎設施企業必須採取適當的保護措施以保障關鍵基礎設施的正常運行。所採取的保護措施可符合同業或同業公會裡所認可的最新資訊安全標準,且得符合一定的付出成本比例。不過衡量標準,最後還是得由德國聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI)〉做認定。上述之企業需兩年內完成安全防護措施的設置。為防止電信系統非法入侵,該草案也修增德國電信法(Telekommunikationsgesetz)為施予電信業者更高的資訊安全防護標準。針對網際網路服務提供者(Internet Service Providers, ISP)也特別施加設置防範駭客攻擊的尖端防護措施義務。 關鍵基礎設施業者的資訊安全系統均須透過德國聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI)每兩年定期審核,若沒通過則會被要求依德國聯邦資訊安全局的標準去處裡該安全漏洞。 若是上述業者的資訊安全系統有受損,並且可導致關鍵基礎設施的故障或損毀,該企業需通報德國聯邦資訊安全局,且該記錄可匿名化。但是,若是因駭客攻擊直接導致關鍵基礎設施的故障或損毀,該企業則需立即通報德國聯邦資訊安全局,不可匿名。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
法國資料保護機關要求Clearview AI刪除非法蒐集的個人資料法國國家資訊自由委員會(Commission nationale de l’informatique et des libertés, CNIL)自2020年5月起陸續收到民眾對臉部辨識軟體公司Clearview AI的投訴,並展開調查。嗣後,CNIL於2021年12月16公布調查結果,認為Clearview AI公司蒐集及使用生物特徵識別資料(biometric data)的行為,違反《一般資料保護規範》(General Data Protection Regulation,GDPR)的規定,分別為: 非法處理個人資料:個人資料的處理必須符合GDPR第6條所列舉之任一法律依據,始得合法。Clearview AI公司從社群網路蒐集大量全球公民的照片與影音資料,並用於臉部辨識軟體的開發,其過程皆未取得當事人之同意,故缺乏個人資料處理的合法性依據。 欠缺保障個資主體的權利:Clearview AI公司未考慮到GDPR第12條、第15條及第17條個資主體權利之行使,特別是資料查閱權,並且忽視當事人的個資刪除請求。 因此,CNIL要求Clearview AI公司必須於兩個月內改善上述違法狀態,包括:(1)在沒有法律依據的情況下,停止蒐集及使用法國人民的個資;(2)促進個資主體行使其權利,並落實個資刪除之請求。若Clearview AI公司未能於此期限內向CNIL提交法令遵循之證明,則CNIL可依據GDPR進行裁罰,可處以最高 2000萬歐元的罰鍰,或公司全球年收入的4%。