數位議程(Digital Agenda for Europe)規劃2020年全歐洲基本寬頻30mbps以上、且超過一半家戶數具有100mbps接取能力設為目標。歐盟為達成此計畫,在今(2013)年3月發佈「降低建置高速電子通訊網路成本草案」(Reduce The cost of Deploying High-speed Electronic Communications Network)。有鑑於過去調查,挖掘道路佔總光纖基礎建設成本80%,且導致電信商投資低密度、偏遠地區具有龐大壓力。是故,本草案制訂後,不僅可減少30%成本(約400~600億歐元),亦降低既有業者建設壓力與增加新進業者進入市場,使高速網路(30M)能迅速普及於歐洲。
歐盟以發展高速網路為前提,在本部草案中給與基礎供應商(Network Operator)諸多規範,其中又以「共同開挖工程設施」與「開放物理設施」最為重要。共同開挖工程設施是指基礎供應商(Eg:瓦斯、電力、水力、電子通訊業者)有權利可與其他基礎業者協商,共同進行工程建設(例如挖馬路)。基礎供應商應遵守資訊公開與不歧視原則,並在收到通知後的1個月內,須與相對人進行協商。主管機關接到申請後,須於六個月內進行審駁。歐盟認為此舉不僅可減少成本外,亦可減少挖斷管線的情形發生,使現有基礎建設每年可省下五千萬歐元的維修費。
開放物理基礎設施(Physical Infrastructure)方面,是指每個基礎供應商皆有權利與義務開放包含管道、天線桿、人孔蓋(Manholes),以及任何建築物或可進入建築物等設施。因此,電子通訊網路(electronic communications network)業者可透過基礎供應商提供的物理設施(Eg:管道)之位址、大小,與所有權人姓名,在公開、合理無歧視的價格下,取得使用權。
由於,既有建築為了接取高速網路而進行裝修,其造價不菲,為了降低電子通訊網路鋪設的成本,是故,本部草案要求在核發建築許可前,新建物或重建建築須具備高速網路設備至網路終端(network termination points)。這項規定,不僅可降低業者建置網路的成本外,在網路服務商皆有權利使用基礎設備進行服務,預計消費者將可享有物美價廉的網路。
雖然,這些新的規範亦有但書,諸如當基礎設施開放後會干擾原服務、造成危險,亦或視重建建築比例,評估是否需賦予配置網路設備等,使部分輿論認為短期將難以看到成效。不過,隨著時間的演進,就如同歐盟執委會副主席Neelie Kroes所敘,很難想像購買一棟房子將會缺少水、電,而網路亦是如此。因此,當網路成為民生必須後,可以預期關鍵設施的開放、建設成本的降低與民眾需求提高,將使網路普及更為迅速。
歐盟執委會(European Commission)的移動與運輸專員(European Commissioner for Mobility and Transport )Violeta Bulc在2016年11月23日於華沙發表歐盟目前到2019年的無人機發展計畫───U-space管理系統,該計畫希望能使無人機融入歐盟公民日常生活中的一部分。 U-Space為都會區上的空間(Urban-Space),也代表「你的空間」(Your space),範圍為150公尺以下涉及日常生活的空域空間。其在經濟目標上,期望藉由具體的政策,包含全自動化的導航與空中交管系統的建立,可以使一般人可以公平且容易的使用無人機,讓無人機應用在未來的日常生活成為普遍的應用活動,藉以促進整個歐盟無人機產業的發展。因此,進一步在法規管理上,需要在歐盟地區確立有關無人機之註冊、辨識以及衛星輔助設備之要求的全面一體化(Harmonized)系統,以確保該系統下的無人機操作均符合安全和保安的標準且可以達到隱私與環境保護的訴求。 目前看來,U-Space是推動無人機應用的管理系統,法規方面需要歐洲航空安全總署(European Aviation Safety Agency, EASA)於2016年8月22日公布之的初步無人機法規草案(EASA ‘Prototype’ Commission Regulation on Unmanned Aircraft Operations)支持,像是全自動化的導航系統需要的衛星輔助系統(Geo-fencing)就在EASA草案中提及。 而根據歐盟同一天的新聞稿,為達成U-Space之建置有三個面向須努力: 1.新創技術專案之展示:根據U-Space制度涵蓋之項目為運作基礎的展示專案應該評估特定技術的可行性,以讓相關產品服務早日投入應用,具體專案計畫將在2017年上半年推出。 2.產業密切合作:必須在產業相信歐盟執委會的決心以及願意投資無人機科技的前提下,執委會發展相關基礎設施才有意義。 3.設立新的法規標準:即就前述提及之EASA初步無人機法規草案徵詢各界之意見,預計蒐集各界相關意見後,並經由歐盟執委會、歐盟理事會(Council of the European Union)以及歐洲議會(the European Parliament)的三方會議後,在近期內出現更為具體的草案,議題將包含安全、資安、環境以及隱私等。
瑞士洛桑管理學院公布《2025年IMD世界競爭力年報》瑞士洛桑管理學院(International Institute for Management Development, IMD)於2025年6月17日發布《2025年IMD世界競爭力年報》(IMD World Competitiveness Yearbook),針對全球69個國家與地區,從「經濟表現」、「政府效能」、「企業效能」及「基礎建設」四大面向進行綜合評比,瑞士、新加坡與香港分列前三,展現其制度穩定性與政策應變能力的優勢。 排名第一的瑞士,擁有強健的制度架構,且其「政府效能」與「基礎建設」表現卓越,然瑞士在「經濟表現」與「企業效能」表現略有下滑,主要與公共採購制度的透明度相關,當地企業反映,公共部門合約對外國投標者開放程度不足,限制市場競爭並影響外資參與。 新加坡「經濟表現」亮眼,使其整體競爭力維持在第二名,然因企業外移嚴重,其「企業效能」由去年的第二名滑落至第八,對未來競爭力構成威脅。 香港由第五名升至第三,四大面向皆有明顯進展,顯示其持續改善投資環境;且香港在企業效能方面表現出色,有效強化其作為全球金融中心的地位。 我國排名第六,較去年上升兩名,展現整體競爭力持續提升。四大面向表現均衡,尤以「經濟表現」與「企業效能」成績亮眼,顯示我國出口動能穩定,企業具備良好轉型能力與國際競爭力,科技產業持續發揮關鍵影響力。「政府效能」維持穩定,財政與稅制制度具備競爭優勢,對營商環境有正面助益。惟在「基礎建設」與社會面向方面,仍面臨人口結構變遷、能源轉型與永續發展等挑戰,需持續強化相關制度與政策配套,以確保長期發展動能。 總體而言,競爭力除經濟與治理外,亦受社會及供應鏈變動影響。未來各國應持續強化治理與創新能力;兼顧社會包容性與產業永續發展,以維持長期競爭力。
英國Patent Box租稅優惠政策英國Patent Box租稅優惠政策 科技法律研究所 2014年03月25日 壹、政策背景 歐盟在2000年規劃的里斯本策略[1],就創造工作機會與保障勞工權益方面積極作為,驅使歐盟各國稅法改革,成功使歐盟在國際上擁有強大稅制上競爭力。而後法國、匈牙利、盧森堡、比利時、荷蘭、西班牙等國家,先後就研發活動施行優惠稅制,更強化其研發活動創造、發展的誘因。 2011年英國政府成長計畫[2]檢討近10年來,各國降低稅率、打破貿易壁壘、培育專家人才,同時英國經濟疲弱,負債且競爭力下降。因此英國政府在計畫中提出要建立G20[3]中最具競爭力之稅制。在不願與其他國家進行稅金削價競爭下,英國政府決定自專利著手,認為專利與高科技研究發展最具關連性,且專利本身已具完備審查機制,於是以專利獲利為主的優惠稅制逐步成形,稱為Patent Box,2011年6月英國財政局HMRC廣納各界意見,並在2012年Finance Act修法草案第8A章節提出。 對於Patent Box的設計,英國政府提出幾個原則:首先為不造成企業困擾,Patent Box必須為自願性參加;並且2013年4月起,為來自專利的獲利提供10%的優惠稅率;專利獲利之計算應避免為企業製造不必要的行政成本;不以總收入計算而以淨獲利計算;鼓勵持續研發等。 貳、政策方針 一、政策目的 英國政府早期對法人的租稅獎勵,係針對中小法人購置網際網路軟硬體設備、研發相關費用等,提供100%當年度投資抵免的獎勵;而為促進法人進行科學技術研究,2000年開始提供中小法人投入研發投資抵減獎勵,2002年擴及於大法人亦得適用,但抵減率降為25%。 英國政府為了鼓勵法人將高值專利與其運用發展紮根國內,以法人稅(Corporation Tax)角度出發,提議租稅優惠方案「Patent Box」。政府認為此方案能夠提供國內法人額外動機,將高價值工作與專利相關生產活動留在國內,並強化英國法人目前在全球的高值研發能量。 此方案由工黨政府提出,但直到2010年11月保守黨政府執政時,才將之納入執政提議政策,隔年6月與幕僚單位諮詢相關立法細節與範圍後,迅速於同年12月擬出草案。2012年7月,Patent Box方案經皇家同意被納入「法人稅法(the 2010 Corporation Taxes Act)」之修法法案「財政法(the 2012 Finance Act)」之中。2013年4月起,英國法人若透過自主研發或委託研發所產生之專利而賺取之收入,法人稅可由原本的20~24%(2013年4月法人稅為23%),調降適用10%的優惠稅率。 此方案的推出,一部份原因為產業界輿論稱英國原租稅制度使法人逐漸喪失競爭力;而之所以將租稅優惠鎖定為專利權(與特定植物品種權),係因為專利權與高科技研發生產具有很強的鍊結,並且專利權本身的審核制度更已為Patent Box方案挑選出真正的創新科技發明。 二、Patent Box 優惠稅制影響評估 (一)英國國庫 英國Patent Box採逐步調降稅率之實施方式,以減輕對國庫的負擔,2013年以獲利的60%適用Patent Box 10%的優惠法人稅稅率,之後隔年增加10%,直至2017年4月1日,100%獲利適用10%之優惠法人稅稅率。而HMRC預算預估之英國專利獲利金額,係以其資料庫為基礎推算之。 (二)英國法人 調降法人稅對英國法人而言,也降低了將相關專利獲利移出境外之動機;此外,對於未申請專利者,Patent Box更增加其申請的動機,繼而提高發明之價值。 對於中小型法人而言,此方案可使其檢視自身專利布局,但對於未接觸過專利想加入此方案者,會增加該些中小型法人之相關行政成本,但Patent Box一產品僅須具一專利之設計,可減輕對此類法人之負擔調降法人稅對英國法人而言,也降低了將相關專利獲利移出境外之動機;此外,對於未申請專利者,Patent Box更增加其申請的動機,繼而提高發明之價值。 對於中小型法人而言,此方案可使其檢視自身專利布局,但對於未接觸過專利想加入此方案者,會增加該些中小型法人之相關行政成本,但Patent Box一產品僅須具一專利之設計,可減輕對此類法人之負擔。 (三)英國經濟 由專利獲利的法人可受惠於此方案,尤其是醫藥、生技、電子、國防等產業。Patent Box方案更可吸引國外創投資金,增進國內經濟並增加高值工作機會。 [1]Directorate-General for International Policies - Policy Department, The Lisbon Strategy 2000-2010, European Parliament (2011), http://www.europarl.europa.eu/document/activities/cont/201107/20110718ATT24270/20110718ATT24270EN.pdf (last visited, Feb 19, 2014) [2]HM Treasury, The Plan for Growth, March 2011, https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/31584/2011budget_growth.pdf (last visited, Feb 11, 2014) [3]G20,一個國際經濟合作論壇,由八國集團(美國、日本、德國、法國、英國、義大利、加拿大和俄羅斯)以及其餘十二個重要經濟體(歐盟、中華人民共和國、巴西、印度、澳大利亞、墨西哥、韓國、土耳其、印尼、沙烏地阿拉伯、阿根廷和南非)組成。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)