數位議程(Digital Agenda for Europe)規劃2020年全歐洲基本寬頻30mbps以上、且超過一半家戶數具有100mbps接取能力設為目標。歐盟為達成此計畫,在今(2013)年3月發佈「降低建置高速電子通訊網路成本草案」(Reduce The cost of Deploying High-speed Electronic Communications Network)。有鑑於過去調查,挖掘道路佔總光纖基礎建設成本80%,且導致電信商投資低密度、偏遠地區具有龐大壓力。是故,本草案制訂後,不僅可減少30%成本(約400~600億歐元),亦降低既有業者建設壓力與增加新進業者進入市場,使高速網路(30M)能迅速普及於歐洲。
歐盟以發展高速網路為前提,在本部草案中給與基礎供應商(Network Operator)諸多規範,其中又以「共同開挖工程設施」與「開放物理設施」最為重要。共同開挖工程設施是指基礎供應商(Eg:瓦斯、電力、水力、電子通訊業者)有權利可與其他基礎業者協商,共同進行工程建設(例如挖馬路)。基礎供應商應遵守資訊公開與不歧視原則,並在收到通知後的1個月內,須與相對人進行協商。主管機關接到申請後,須於六個月內進行審駁。歐盟認為此舉不僅可減少成本外,亦可減少挖斷管線的情形發生,使現有基礎建設每年可省下五千萬歐元的維修費。
開放物理基礎設施(Physical Infrastructure)方面,是指每個基礎供應商皆有權利與義務開放包含管道、天線桿、人孔蓋(Manholes),以及任何建築物或可進入建築物等設施。因此,電子通訊網路(electronic communications network)業者可透過基礎供應商提供的物理設施(Eg:管道)之位址、大小,與所有權人姓名,在公開、合理無歧視的價格下,取得使用權。
由於,既有建築為了接取高速網路而進行裝修,其造價不菲,為了降低電子通訊網路鋪設的成本,是故,本部草案要求在核發建築許可前,新建物或重建建築須具備高速網路設備至網路終端(network termination points)。這項規定,不僅可降低業者建置網路的成本外,在網路服務商皆有權利使用基礎設備進行服務,預計消費者將可享有物美價廉的網路。
雖然,這些新的規範亦有但書,諸如當基礎設施開放後會干擾原服務、造成危險,亦或視重建建築比例,評估是否需賦予配置網路設備等,使部分輿論認為短期將難以看到成效。不過,隨著時間的演進,就如同歐盟執委會副主席Neelie Kroes所敘,很難想像購買一棟房子將會缺少水、電,而網路亦是如此。因此,當網路成為民生必須後,可以預期關鍵設施的開放、建設成本的降低與民眾需求提高,將使網路普及更為迅速。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
英國通過《電子貿易文件法》,將透過「可信賴系統」的要求強化電子貿易文件的證明效力英國國會於2023年7月上旬通過《電子貿易文件法》(Electronic Trade Documents Act 2023, ETDA),經國王於7月20日正式批准,該法於2023年9月20日正式生效,未來英國的電子貿易文件將與紙本貿易文件具有相同效力。 一直以來,英國僅承認紙本貿易文件的法律上效力,因此英國企業在進行國際貿易的各環節上,必須處理上百頁的紙本文件,造成英國企業及其交易對象必須花費相當高的時間和金錢成本,不僅效率低且造成環境破壞,同時紙本文件也較難驗證其真實性。在數位轉型趨勢下,此類陳舊的法律早已不合時宜,因此美國、新加坡、德國等國家也正在進行類似立法,而英國是七大工業國組織(Group of Seven, G7)中第一個完成立法的國家。 該法正式施行後,可大幅降低英國企業的成本,提升國貿及融資的效率;根據英國政府估計,未來十年,該法將可為英國經濟創造11.4億英鎊的淨效益(net benefit),同時每年可減少10%以上的碳排放量,有助於落實ESG。更重要的是,相對於紙本,貿易文件的數位化,可提升安全性和透明性。 根據該法第2條第2項規定,電子貿易文件必須是由「可信賴系統」(reliable system)所產生,所謂「可信賴系統」必須具備以下特徵: 1.能清楚識別文件,與其他副本加以區分; 2.能防止文件遭到未經授權的修改; 3.確保任何時點僅有一人能對該文件行使控制權; 4.允許能夠對該文件行使控制之人,能向他人「證明」其控制權; 5.確保電子貿易文件移轉後,使前手立即喪失控制權。 此外,第2條第5項列出在判斷一個系統是否可信賴時,可考量的7點因素,其中第5點指出可考量該系統是否經獨立機構定期稽核(包含稽核頻率和範圍),以及第6點為該系統是否經監管機關進行任何可信賴性的評估。 雖然該法基於技術中立(technological neutrality),並未明定何種技術符合「可信賴系統」的要求。然而,起草該法的法律委員會(Law Commission of England and Wales, LCEW)於2022年3月的草案報告中花了相當大的篇幅說明「分散式帳本」(Distributed Ledger Technology, DLT)的技術,並認為DLT在透明性、安全性、不可竄改等面向有較好的表現,因此指出這是「目前」產生可信賴電子貿易文件的重要技術之一。英國政府表示,承認電子貿易文件的法律效力後,國際貿易各環節的參與者可以透過如DLT等技術,更有效地追踪相關紀錄,進而提高國際貿易的安全性和合規性。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
與時俱進的新興科技法制-美國無人飛行器(UAS)管理法制初探與時俱進的新興科技法制-美國無人飛行器(UAS)管理法制初探 科技法律研究所 法律研究員 陳世傑 2015年07月30日 壹、事件摘要 因電子與無線傳輸科技的進步,俗稱Drone的無人飛行器(Unmanned Aerial Vehicles,UAV),自美國亞瑪遜公司(Amazon)擬採為運送網路購物商品的工具後,無人飛行器的運用,已逐步從單純娛樂用途跨向商業用途的應用。無人飛行器的廣泛運用,是否可能影響安全、隱私、甚至政府監視的警察國家爭議,已經引起美國各級政府的重視,也紛紛立法加以因應。聯邦議會與各州議會亟思如何在法規上妥善調適,以因應越來越多商用無人飛行器的用途需求與其他公益保護之考量,例如飛航安全、隱私安全、甚至國土安全等,美國已經採取相關法制規劃,以完善UAV之管理。 貳、重點說明 一、美國聯邦管理法規 無人飛行器在美國由其聯邦航空總署(Federal Aviation Administration,FAA)主管,2012年2月14日生效的FAA現代化及改革法(The FAA Modernization and Reform Act of 2012,FMRA),為美國聯邦法律主要的管理法源。 FMRA對無人飛行器所採正式名稱為無人飛行機(Unmanned Aircraft),依其第331節定義,UAS指,而小型UAS(Small unmanned aircraft)則指55磅以下之UAS。 FAA指出,無人飛行系統(Unmanned Aircraft Systems,UAS)依其用途區分為公務用(Public Operations)、民用(Civil Operations)、娛樂用(Model Aircraft)三種,並有不同的管理規定。 公務用無人飛行器使用管理相關聯邦法律,有49 U.S.C. § 40102(a)(41)及49 U.S. Code § 40125就「公務用飛行器」(Public Aircraft)使用範疇之相關規定。 法律規定之公務用無人飛行器,FAA得發給飛航許可(Certificate of Waiver or Authorization,COA),而在其許可之特定空間範圍、操作方式或使用目的下操作公務用無人飛行器。FAA發給公務用無人飛行器之COA時多會附加公共安全之要求,例如不得於人口密集區域使用、避免影響其他飛行器路權(right-of-way rules)的使用。 民用無人飛行器之使用,可向FAA申請兩種使用許可,一為FMRA第333節之特許(Section 333 Exemption),其次為FAA第8130.34號行政命令特別適航性許可(Special Airworthiness Certificate,SAC)。 FMRA第333節之特許規定要求,美國聯邦運輸部得經申請,在一定體積、重量、飛行速度、安全性等要求下,特許申請人以無人飛行器進行商業使用(Certificate of Waiver or Authorization,COA),文前所述Amazon所遞交之申請即為此種COA。 SAC特別適航性許可則是要求申請人,於檢具所申請之飛行系統之硬體結構與軟體開發、控制與其管理(configuration management)之設計、規劃、製造上具適航性之說明以進行SAC申請。 娛樂用無人飛行器之使用,依照FMRA第336節規定,毋須經主管機關許可,惟仍須符合以下規定,包括飛行高度須低於400呎且維持飛行區域之淨空,且飛行器應隨時處於使用者目視可及之範圍。 二、美國各州管理法規 在聯邦層級法律以外,除華盛頓特區已為無人機禁用區(No Drone Zone)外,美國各州對於無人飛行器之使用,也各自有不同的立法。至2015年6月為止,美國共有25州對無人飛行器之定義、使用、管理等已有相關法律施行。2015年美國已有45州計151個法案與無人飛行器之使用管理進行規定。阿肯色州等15州完成立法,阿拉斯加等4州通過提案交付審查,喬治亞洲決議交由州議會成立特別委員會進行無人飛行器法案研究、新墨西哥州則由州參眾兩院通過備忘錄就無人飛行器的使用對於野生動物保護之影響進行研究。 參、事件評析 美國自聯邦乃至各州法規對於UAS之管理密度與保護面向各有不同,惟就聯邦FAA受理申請之情形,與各州之立法進度,顯見UAS此一新興科技所帶來的法制調適已經如火如荼的展開。UAS的逐漸普及所帶來的法規相應調整或跟進的需求,已促使美國聯邦與州政府的重視。甚至除了使用的管制外,有關UAS的輸出,美國國務院亦於2015年2月發布有關軍事用途UAS的出口管制政策,其中也同時對商用無人機之出口進行一定程度之管理,可見無人機技術的進步,未來將逐步帶動法制面從使用管理、產品管理甚至朝向技術管理發展。
跨平台應用程式的開發探討-以資料流動因應措施為中心