根據Ponemon Institute的調查,2011年至2012年中,英國企業資料侵害事故平均成本增加了15%。賽門鐵克指出,若企業備有正式的事故應變計畫,每件資料侵害事故的平均成本會降低至13英磅左右。除此之外,雇用外部顧問來協助應變,每件資料侵害事故的平均成本也會節省4英磅。
依據新的資料保護法律架構,歐盟委員會日前已開始擬訂新的資料侵害事故通知制度。同時,根據不同委員會的需求,未來將針對特定產業,制定新的網路與資訊安全管理規範。。
專家評估未來責任保險將成為確保資訊安全的新潮流。企業藉由事先擬定事故應變計劃來降低資料侵害的風險,同時也進行風險轉移的處置措施。各項事故應變計劃之中,保險制度是企業目前較感興趣的措施之一。保險制度除了可用於風險轉移之外,企業還可以從中取得資料侵害事故的專家網絡。這些專家包含事故鑑定專家、公共關係專家、風險管理專家,信用監測提供者或是資料侵害事故的事務處理公司,例如:協助發送事故通知的公司。保險業建置的專家網絡,未來將可以幫助要保人,以最快最省成本的方式處理相關事故。
美國於2018年10月11日正式簽署通過《音樂現代化法》(Orrin G. Hatch-Bob Goodlatte Music Modernization Act, MMA),該法搭起時代鴻溝的橋樑。《音樂現代化法》囊括三個從2017年分別通過的子法,並成為《音樂現代化法》中的三個大標題: 第一部份:音樂授權現代化(Music Licensing Modernization) 音樂作品本身的著作權、重製權是「大權利」(Grand Right),而公開傳輸權則是「小權利」(Small Right)。前者是恢復市場機制、自由議價,愈自由愈好;後者則是愈方便、愈能夠使音樂作品被世人看見愈好。《音樂現代化法》實踐了這個理想。《音樂現代化法》成立職司音樂著作授權的非營利組織「音樂機械灌錄集體授權組織」(The Mechanical Licensing Collective, MLC)。該組織是針對「數位音樂串流業者」量身打造,進行音樂數位使用(Digital Uses)的概括式授權(Blanket License)。再者,根據舊法,授權金是法定的,但《音樂現代化法》予以音樂創作人對其作品的授權金額保有協商權(Authority to Negotiate)。同時透過音樂資料庫的建立和免費線上檢索系統,方便音樂使用人查詢與媒合。 第二部份:經典音樂法(CLASSICS Act) 溯及賦予1923年1月1日至1972年2月14日之間的音樂,就未經授權而進行「數位錄音傳輸」(Digital Audio Transmissions)之行為,使之有從首次公開發行後95年的著作權保護。這裡授權的客體所會得到的權利相近於1972年後錄音著作「非互動式數位串流服務」所得到的保護。 第三部份:音樂製作人分潤(Allocation for Music Producers) 在科技世代,一個偉大的音樂創作,並非作曲人獨力完成的,《音樂現代化法》以分潤制度,讓音樂製作人、混音師及音訊工程師首次獲得法律上的權利。
「英國開放網路守則」英國2011年3月由寬頻政策顧問小組(Broadband Stakeholder Group, BSG)公布促進流量管理政策透明化守則,2012年並依該流量管理政策守則公布「開放網路守則」,此即英國之網路中立性規範,ISP業者必須遵守流量管理規定且不得阻礙服務競爭。2016年6月,BSG公布新修訂之開放網路守則(Open Internet Code of Practice),支持業者以開放網路做為原則,網路使用者得於網路上取得合法內容,並確保ISP業者依據網路中立性原則提供管理或其他服務。在對於流量管理的分配調整方面,ISP業者必須依據開放網路原則提供相關服務,而不得因商業競爭的考量影響使用者權益與服務品質。在使用者權益保障方面,流量管理資訊必須透明化,ISP業者同意依合理方式提供清楚正確之流量管理原則,且該原則必須具有適當性且不得歧視。此外,透過定期公布關鍵事實指標(Key Facts Indicator, KFI),ISP業者應讓消費者瞭解流量使用與管理情形。在我國,目前僅於電信法第21條訂有網路中立性之宣示性規範。通訊傳播委員將提出之新匯流五法中的電信法與數位通訊傳播法當中,不論是否訂有網路中立性之具體規範,在此之前亦得參考英國之自律管理模式,以建構平等開放之網路環境。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
發展再生能源 農委會推展生質能源作物管制全球溫室氣體排放量的京都議定書生效,發展再生能源成為趨勢。行政院農業委員會投入生質能源作物開發,規劃利用北、中、南三地共九十公頃的休耕農田,種植向日葵、大豆及油菜等三種油料能源作物,研發生質柴油,期盼提高農業「綠色產值」。 農委會指出,農業部門在再生能源領域中也有發揮空間,國內外生質能源相關研究認為可利用植物將太陽能、水力及二氧化碳轉化為生質能源,台灣每年有不少農地休耕,可利用推展能源作物,發展生質能源,同時提升休耕農田的附加價值,開創台灣農業發展新契機。 農委會官員指出,研究發現這些作物製成的生質柴油使用於汽車與一般柴油相同,而且排放的廢氣、二氧化碳較少,不過,生質油成本較柴油高,相關技術尚待進一步研究。