政府科研計畫執行與貪污犯罪

刊登期別
第25卷,第3期,2013年03月
 

本文為「經濟部產業技術司科技專案成果」

※ 政府科研計畫執行與貪污犯罪, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6217&no=55&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
保險新品~開放原始碼保單

  由於開放原始碼的風氣盛行,使得許多 軟體業者 在使用開放原始碼軟體開發自家的軟體產品時,常不小心 逾越開放原始碼的授權範圍而陷身於 侵權的風險中。大抵一般比較常見的侵權情形,如企業開發專有軟體時, 利用單一或多樣以上的開放原始碼元件來建置,如交易工具或財產庫存管理應用程式等,而將這些程式流通於內部企業網路或是傳遞給外部客戶使用時,已構成”散佈”行為,是觸犯了開放原始碼 GPL ( General Public License ,通用公共許可 )授權 。   日前位於紐約的 開放原始碼風險管理公司( Open Source Risk Management , OSRM )結合 Lloyd's 保險業者 Kiln 及 Miller 保險經紀公司推出開放原始碼保單來承擔企業使用開放原始碼的風險,該保險單最高賠償金額為 1000 萬美元。平均而言,企業若是投保 100 萬美元的保單,每年大約必須支付 2 萬美元的保險費。

歐盟數位經濟公平稅負指令草案無共識,法國國民議會批准數位服務稅

  2018年3月21日,歐盟執行委員會(European Commission)發布數位經濟公平課稅(Fair Taxation of the Digital Economy)指令草案,指出在數位經濟模式中,由於創造利益的用戶資料地並不受限於營業處所,因此銷售貨物與提供勞務之增值發生地,與納稅主體之納稅地點分離,而無法為現行來源地原則所評價,嚴重侵蝕歐盟境內稅基。對此,該草案分別提出了數位稅(Digital Tax)與顯著數位化存在(Significant Digital Presence)兩份提案,用以針對特定數位服務利潤制定共同性數位稅制,以確保數位服務業者與傳統的實體公司立於平等的市場競爭地位。   值得關注的是,該草案之長遠解決提案以「顯著數位化存在」(Significant Digital Presence)修正國際間課稅權歸屬之重要人事(Significant People function)功能判斷,並認為建立利潤分配原則時,應參考經濟合作暨發展組織(Organization for Economic Cooperation and Development)稅基侵蝕與利潤移轉(BEPS,Base Erosion and Profit Shifting)行動計劃中DEMPE模式(Development Enhancement Maintenance Protection Exploitation function),決定獲利之分配,作為未來增值利益的認定。   然而不少持反對意見的國家認為,數位經濟只是傳統公司面對數位化,利用無形資產的商業模式改變而已,而此種新興模式並不足以作為開徵數位稅收新稅種。縱使數位經濟下無形資產產生之價值必須重新界定,現行稅收歸屬與國際間租稅協定本身並無不妥,而應強調各國稅捐機關之租稅資訊之合作。愛爾蘭已與捷克共和國、芬蘭、瑞典發表反對聲明,表示數位經濟課稅的方案不應背離BEPS行動計畫之期中報告,並應考慮到國際間因租稅引起的貿易戰爭,以及避免對數位經濟的扼殺。   目前,法國政府為了回應黃背心運動(Mouvement des gilets jaunes)對於稅制改革的要求,已先行針對數位服務提出了稅收草案,並於2019年4月9日經國民議會(Assemblée Nationale)批准。該法案將針對全球營收超過7.5億歐元之數位服務業者,以境內網路社群利潤,推估大型數位企業之應稅所得,課徵百分之三的數位服務稅。該法案將在2019年5月21日在法國上議院進行審議。

美國科羅拉多州通過《人工智慧消費者保護法》

2024年5月17日,科羅拉多州州長簽署了《人工智慧消費者保護法》(Consumer Protections for Artificial Intelligence Act,Colorado AI Act,下簡稱本法),其內容將增訂於《科羅拉多州修訂法規》(Colorado Revised Statutes,簡稱CRS)第6篇第17部分,是美國第一部廣泛對AI規範的法律,將於2026年2月1日生效。 本法旨在解決「高風險人工智慧系統」的演算法歧視(Algorithmic Discrimination)的問題 ,避免消費者權益因為演算法之偏見而受到歧視。是以,本法將高風險AI系統(High-risk Artificial Intelligence System)定義為「部署後作出關鍵決策(Consequential Decision)或在關鍵決策中起到重要作用的任何AI系統」。 而後,本法藉由要求AI系統開發者(Developers)與部署者(Deployers)遵守「透明度原則」與「禁止歧視原則」,來保護消費者免受演算法歧視。規定如下: (一)系統透明度: 1.開發者應向部署者或其他開發者提供該系統訓練所使用的資料、系統限制、預期用途、測試演算法歧視之文件以及其他風險評估文件。 2.部署者應向消費者揭露高風險人工智慧系統的預期用途,也應在高風險人工智慧系統做出決策之前向消費者提供聲明,聲明內容應該包含部署者之聯絡方式、該系統的基本介紹、部署者如何管理該系統可預見之風險等資訊。 (二)禁止歧視: 1.開發者應實施降低演算法歧視之措施,並應協助部署者理解高風險人工智慧系統。此外,開發者也應該持續測試與分析高風險人工智慧系統可能產生之演算法歧視風險。若開發者有意修改該系統,應將更新後的系統資訊更新於開發者網站,並須同步提供給部署者。 2.部署者應該實施風險管理計畫,該風險管理計畫應包含部署者用於識別、紀錄降低演算法歧視風險之措施與負責人員,且風險管理計畫應定期更新。在制定風險管理計畫時,必須參考美國商務部國家標準暨技術研究院(National Institute of Standards and Technology, NIST)的《人工智慧風險管理框架》(AI Risk Management Framework, AI RMF 2.0)與ISO/IEC 42001等風險管理文件。 美國普遍認為科羅拉多州的《人工智慧消費者保護法》為目前針對人工智慧系統最全面之監管法規,可作為其他州有關人工智慧法規的立法參考,美國各州立法情況與作法值得持續關注。

美國FTC通過「禁止企業簽訂競業禁止契約」的最終規定

美國聯邦貿易委員會(下稱FTC)於2024年4月23日通過「禁止企業簽訂競業禁止契約」最終版本的規定(以下稱「最終規定」) ,FTC認為「簽訂或執行競業禁止契約」違反《聯邦貿易委員會法》(Federal Trade Commission Act)第5條之防止不公平競爭之違法手段之規定。最終規定所禁止簽訂競業禁止契約的對象廣泛,包含獨立承包商、為營利企業工作的員工,並將可能取代其他規範競業禁止契約效力之州法。不過,尚有部分情形將排除最終規定的適用,如: (1)公司與高階主管的既有競業禁止契約仍屬有效,而高階主管被定義為「年收入超過 151,164 美元(約新臺幣4,927,492元)且擔任決策職位」的員工,如總裁、首席執行長或其他擁有企業重大決策權的職位。 (2)允許出於善意收購企業的雙方簽訂競業禁止契約。 (3)因FTC對於某些產業無監管權,因此該等產業不適用於禁止簽訂競業禁止契約的最終規定,如非營利組織、銀行、保險公司以及航空公司。 FTC指出最終規定於美國聯邦公報上公布120天(約4個月)後生效,並要求現已簽訂競業禁止契約之雇主負有通知義務,雇主須透過數位(電子郵件或簡訊)或紙本方式,明確地通知現任、前員工,其既有的競業禁止契約即將失效。 但美國商會(U.S. Chamber of Commerce)已聲明表示該最終規定有超出FTC管轄範圍之疑慮,故後續可否執行最終規定,仍有待密切關注。 為因應FTC大範圍禁止簽訂競業禁止契約之法制方向,建議公司可參考資策會科法所發布之「營業秘密保護管理規範」以系統性方式檢視不同面向的既有管理作法,如人員面、內容面等,以落實對於營業秘密的保護。 1.關於文件的管理建議 先盤點紙本及數位機密文件;再設定文件之接觸權限。 2.關於人員的管理建議 留意人員的智財教育訓練;人員的保密或智財權歸屬契約,確保契約約定已納入公司想保護的機密資訊,比如客戶或供應商名單及聯絡資訊、產品規格、製程等;以及離職管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。

TOP