法國擬針對智慧型手機、平板電腦課徵文化稅

  為了替法國藝術、電影和音樂等文化產業籌措資金,法國政府委託電視頻道集團Canal Plus前任執行長Pierre Lescure進行研究。報告最終建議,法國應針對Apple Inc.的iPhone、iPad及Google Android產品等智慧型手機、平板電腦課徵銷售稅。

 

  報告指出,目前電視頻道、廣播、網路商等,皆已負擔一定費用,以協助文化產業發展,故智慧型手機、平板電腦此類重要媒介亦應採取類似措施。不過為了避免對市場造成過大衝擊,此銷售稅須維持在「極低水準」,預計稅率將落在1%左右,並可望為法國政府每年帶來約8,600萬歐元的稅收。

 

  此舉被認為與法國長期採取的「文化例外(Cultural Exception)」政策立場有關。「文化多樣性」被認為是人類文明發展應遵循的共同價值,為了達成此目標,法國政府進一步認為在經濟層面上,政府基於保護自身文化產業,得在貿易談判中,將文化產業排除於自由貿易架構之外給予優惠,即所謂的「文化例外」。就目前而言,智慧型手機、平板電腦等硬體,在整體文化內容市場中,被認為佔有過大利潤,已壓縮文化產業發展空間,故必須採取適當措施,以衡平市場發展。

 

  此項建議,預計將於今(2013)年7月間,由法國總統François Hollande決定是否正式進入立法程序。

相關連結
※ 法國擬針對智慧型手機、平板電腦課徵文化稅, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6234&no=55&tp=1 (最後瀏覽日:2026/02/06)
引註此篇文章
你可能還會想看
日本公布第6期科學技術與創新基本計畫草案並募集公眾意見,著重疫情與科技基本法修正後之因應

  日本內閣府於2021年1月20日發布「第6期科學技術與創新基本計畫」(科学技術・イノベーション基本計画,以下稱第6期科技創新基本計畫)草案,並自即日起至同年2月10日,對外徵求公眾意見。依2020年6月修正通過之日本科學技術與創新基本法(科学技術・イノベーション基本法,預定2021年正式公告施行)第12條規定,要求政府應就振興科學技術與創新創造的政策,擬定基本計畫並適時檢討調整,同時對外公告。而本次草案的提出,便為因應現行的第5期科學技術基本計畫即將屆期,啟動擬定下一期基本計畫。   依草案內容,第6期科技創新基本計畫延續Society5.0的願景,並以數位化及數位科技作為發展核心。但檢視至今的科技創新政策成效,數位化進程不如政策目標所預期;受COVID-19疫情影響,也提升了科技普及化應用的重要性。另一方面,科學技術基本法的修正,則揭示了人文社會科學與自然科學跨域融合運用的方向,並期待藉由創新創造納為立法目的,實現進一步的價值創造。基此,第6期科技創新基本計畫提出,應從強化創新、研究能量及確保人才與資金的三方向為主軸,結合SDGs、數位化、資料驅動及日本共通在地價值,建構出「日本模型」(Japan Model)作為實現Society5.0的框架。   針對如何強化創新能力、研究能量及確保人才與資金,計畫草案提出以下方向: (1)強化創新能力:整體性強化創新生態系(innovation ecosystem),建構具韌性的社會體系,並有計畫地推動具社會應用可能的研發活動。具體作法包含藉由AI與資料促成虛擬空間與現實世界的互動優化、持續縮減碳排放量實現循環經濟、減低自然災害與傳染病流行對經濟社會造成的風險、自社會需求出發推動產業結構走向創新、拓展智慧城市(smart city)的應用地域等。 (2)強化研究能力:鼓勵開放科學與資料驅動型之研究,並強化研究設備、機器等基礎設施的遠端與智慧機能,推動研究體系的數位轉型;以資料驅動型為目標,多元拓展具高附加價值的研究,包含生命科學、環境、能源、海洋、防災等領域;擴張大學的機能,如增進大學的自主性,從經營的角度調整與鬆綁國立大學法人的管理與績效評鑑方式等,用以厚植創新基底。 (3)人才培育及資金循環:目標培養具備應變力與設定議題能力的人才;同時藉由資助前瞻性研發,結合大學的基礎科研成果,激發創新的產出及延伸收益,並回頭挹注於研發,建立研發資金的循環運用體系。

美國擴大綠色科技與溫室氣體減量專利訴審領航方案

  為鼓勵綠色科技產業發展,美國商業部專利商標局(The U.S. Commerce Department's Patent and Trademark Office , 簡稱USPTO)宣布綠色科技與溫室氣體減量領航方案,USPTO表示,對於綠色科技與溫室氣體減量的專利申請案件,將給予加速審查(accelerate the examination)的優惠。美國商業部長Gary Locke表示,美國的競爭力繫於研發創新能力,協助綠色產業儘速得到專利保護將可以刺激是項產業發展。     除了經濟的誘因,行政上的便利也經常是政府用以推動政策的輔助工具,USPTO希望透過這項新措施,幫助相關產業的研發創新。而在研發創新上,廠商的生產方式或是產品如能更快速取得專利的保護,對於該產業的發展應有正面的效益。USPTO在2009年12月提出這項方案後,在2010年5月21日再次宣布將原方案所正面表列的專利類別(U.S. patent classifications, USPCs)刪除,亦即進一步擴大可申請案件的範圍。     美國在發展綠色科技的腳步上一直未曾停歇,除原有透過綠色公共採購(Green Public Procurement, GPP)來擴大此項產業市場,歐巴馬政府上台後更在2009年10月發布的13514號行政命令(Executive Order)要求聯邦機關訂定2020年以前溫室氣體排放減量的目標,實施策略上,政府機關採購目標以95%符合ENERGY STAR® 、FEMP、EPEAT等規格或認證產品優先。綠色公共採購提供的是市場面的誘因,此番USPTO提供的專利審查過程的加速,無異是給予綠色產業再一劑強心針。USPTO該方案執行期間以1年內3千件申請案為上限,此項措施如能有效刺激產業發展,值得加以觀察。

澳洲隱私專員主張應從嚴認定個人資料去識別化

  澳洲隱私保護辦公室(Office of the Australian Information Commissioner, OAIC)專員今年(2016)4月發表聲明認為,在符合特定條件之情形下,亦即,去識別化過程符合OAIC認定之最高標準時,去識別化後之資料不適用「1988隱私法案」(Privacy Act);澳洲企業組織目前所進行之個人資料去識別化,是否已符合「1988隱私法案」之規範要求,OAIC仍持續關注。OAIC近期準備提出去識別化認定標準之指引草案。   澳洲「1988隱私法案」揭示了「澳洲隱私原則」(Australian Privacy Principles, APPs),就非公務機關蒐集、利用、揭露與保存設有規定,APPs第6條更明文限制非公務機關揭露個人資料,於特定情況下,APPs允許個人資料經去識別化後揭露。例如,APPs第11.2條規定,若非公務機關當初之蒐集、利用目的已消失,須以合理方式將個人資料進行銷毀或去識別化。   如非公務機關係合法保有個人資料,即無銷毀或去識別化義務;此外,若所保有個人資料屬健康資料者,因係澳洲政府機關以契約方式委託非公務機關,非公務機關亦無銷毀或去識別化義務。應注意者,APPs原則上禁止非公務機關基於學術研究、公共衛生或安全之目的,主動蒐集個人健康資料 (APPs第16B(2)條),同時亦禁止基於學術研究、公共衛生或安全目的,就保有之個人資料進行去識別化 (APPs第16B(2)(b)條)。如非基於前述目的,且符合APPs第16B(2)條之要件者,非公務機關始得基於研究、公共衛生或安全目的蒐集個人健康資料 (APPs第95A條)。   其他如「稅號指引」(Tax File Number Guidelines)、隱私專員所提「2014隱私(財務信用有關研究)規則」(Privacy Commissioner’s Privacy (Credit Related Research) Rule 2014) 等,均就個人資料去識別化訂有相關規範。   未來以資料為導向之經濟發展,將需堅實的隱私保護作為發展基礎,澳洲去識別化個人資料認定標準之提出,以及標準之認定門檻,殊值持續關注。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

TOP