為了替法國藝術、電影和音樂等文化產業籌措資金,法國政府委託電視頻道集團Canal Plus前任執行長Pierre Lescure進行研究。報告最終建議,法國應針對Apple Inc.的iPhone、iPad及Google Android產品等智慧型手機、平板電腦課徵銷售稅。
報告指出,目前電視頻道、廣播、網路商等,皆已負擔一定費用,以協助文化產業發展,故智慧型手機、平板電腦此類重要媒介亦應採取類似措施。不過為了避免對市場造成過大衝擊,此銷售稅須維持在「極低水準」,預計稅率將落在1%左右,並可望為法國政府每年帶來約8,600萬歐元的稅收。
此舉被認為與法國長期採取的「文化例外(Cultural Exception)」政策立場有關。「文化多樣性」被認為是人類文明發展應遵循的共同價值,為了達成此目標,法國政府進一步認為在經濟層面上,政府基於保護自身文化產業,得在貿易談判中,將文化產業排除於自由貿易架構之外給予優惠,即所謂的「文化例外」。就目前而言,智慧型手機、平板電腦等硬體,在整體文化內容市場中,被認為佔有過大利潤,已壓縮文化產業發展空間,故必須採取適當措施,以衡平市場發展。
此項建議,預計將於今(2013)年7月間,由法國總統François Hollande決定是否正式進入立法程序。
美國衛生及公共服務部(U.S. Department of Health and Human Services, HHS)民權辦公室(Office for Civil Rights, OCR)於2023年10月18日發布了兩份文件,針對遠距醫療情境下的隱私和資訊安全保護,分別給予病人及健康照護服務提供者(下稱提供者)實務運作之建議。本文主要將發布文件中針對提供者的部分綜合整理如下: 1.於開始進行遠距醫療前,提供者應向病人解釋什麼是遠距醫療及過程中所使用的通訊技術。讓病人可瞭解遠距醫療服務實際運作方式,若使用遠距醫療服務,其無須親自前往醫療院所就診(如可以透過語音通話或視訊會議預約看診、以遠端監測儀器追蹤生命徵象等)。 2.提供者應向病人說明遠距醫療隱私和安全保護受到重視的原因。並且向病人告知為避免遭遇個資事故,提供者對於通訊技術採取了哪些隱私和安全保護措施,加以保護其健康資訊(如診療記錄、預約期間所共享資訊等)。 3.提供者應向病人解釋使用通訊技術對健康資訊帶來的風險,以及可以採取哪些方法降低風險。使病人考慮安裝防毒軟體等相關方案,以防範病毒和其他惡意軟體入侵;另網路犯罪者常利用有漏洞之軟體入侵病人裝置,竊取健康資訊,因此可於軟體有最新版本時,盡快更新補強漏洞降低風險;若非於私人場所預約看診,病人則可透過調整裝置或使用即時聊天功能,避免預約資訊洩漏。 4.提供者應協助病人保護健康資訊。確保病人知悉提供者或通訊技術供應商聯絡資訊(如何時聯絡、以什麼方式聯絡等),使病人遭網路釣魚信件或其他方式詐騙時可以加以確認;也應鼓勵病人有疑慮時都可洽詢協助,包括如何使用通訊技術及已採取之隱私和安全保護措施等。 5.提供者應使病人了解通訊技術供應商所採取之隱私和安全保護措施。告知病人通訊技術供應商名稱、採取之隱私和安全保護措施,及如何得知前開措施內容;使病人了解進行遠距醫療時是否使用線上追蹤技術。 6.提供者應告知病人擁有提出隱私投訴的權益。若病人認為自身健康隱私權受到侵犯,得透過OCR網站進行投訴。
美國加州機動車輛管理局3月10日發布無人駕駛車輛管理方案無人駕駛汽車、電腦駕駛汽車或輪式移動機器人,皆屬自動化載具的一種,具有傳統汽車的運輸能力。而作為自動化載具,自動駕駛汽車不需要人為操作即能感測其環境及導航。目前無人車仍未全面商用化,大多數均為原型機及展示系統,部份可靠技術才下放至商用車型,但有關於自駕車逐漸成為現實,已經引起了很多有關於道德與法律上的討論。 無人駕駛車輛若能夠變得商用化,將可能對整體社會造成破壞性創新的重大影響。然而,在商品化之前的實際道路測試是自動駕駛車輛開發過程非常重要的一環,是否允許自動駕駛車輛實際上路測試為各地交通主管機關之職責。因此,為了保障公共安全與推廣創新,為美國加州機動車輛管理局(Department of Motor vehicles ,下稱加州DMV)便自2015年12月公布無人駕駛車輛規範草案後,歷經2016年9月的修正,於2017年3月10日正式公布無人駕駛車輛管理規範。 美國加州申請自動駕駛車輛上路測試規定係依據加州汽車法規 (California Vehicle Code)38750 中之條款 3.7所訂定,依照加州DMV規畫,在社區內和高速公路上進行測試的自動駕駛車,仍需與傳統汽車一樣,具有方向盤與煞車踏板,而且駕駛座上亦需有人隨時待命應付緊急情況發生。此外,無人駕駛車輛尚必須有人進行遠距監控,並且能在緊急情況發生時安全停靠路邊。 截至2017年3月8日,已有27家公司獲得加州DMV許可,在道路上測試無人駕駛車輛,且這些車輛迄今只造成少數事故。加州DMV公布無人駕駛車輛管理規範後,還將於2017年4月24日舉行公聽會持續蒐集意見,研擬規範修改內容,以符合實際需求。 人駕駛車輛是汽車產業未來發展的趨勢之一,我國於不久的將來亦可能面臨有無人駕駛車輛在國內進行實際道路測試的需求。然而,我國地狹人稠,交通狀況複雜,且國人守法觀念尚有加強空間,確也增添無人駕駛車輛在國內道路測試的挑戰性,以及主管機關於受理測試申請之困難度。因此,加州DMV所公布之無人駕駛車輛管理規範之後續發展,值得吾人持續關注。
美國上訴法院推翻FCC對廣電節目猥褻言論之認定美國紐約第二巡迴法院上訴法院於2007年6月5日做出判決,認定FCC對於廣電節目是否違反猥褻言論規範之判斷標準為恣意專斷(arbitrary and capricious)的決定。此一案件起因於福斯電視台轉播2002年及2003年音樂告示排行榜頒獎典禮(Billboard Music Awards)時,歌手Cher及名人Nicole Richie分別在典禮中說出不雅言詞,事後FCC認定福斯電視台之轉播違反廣電節目之猥褻言論相關規範。福斯電視台對於FCC之認定不服,因而向法院提起訴訟。 依照過去FCC對猥褻言論之認定標準來看,「瞬間之咒罵言詞」(fleeting expletives)並不屬於猥褻言論,廣電節目中播出相關內容並不違反猥褻言論之管制規範。但自2003年起,FCC改變認定標準,認為所有不雅言詞均不可避免地帶有性暗示之內涵,因此廣電節目中凡涉及不雅言論之內容都是猥褻言論。 根據紐約第二巡迴法院上訴法院之判決指出,FCC的決定毫無疑問地改變了對於廣電節目是否違反猥褻言論規範之認定標準,且FCC對於改變認定標準一事所提出的理由並不具有說服力;FCC於訴訟過程中亦承認,即便在決定改變認定標準前,也沒有證據顯示廣播電視台曾密集播送充滿咒罵言論之內容。因此,紐約第二巡迴法院上訴法院認為,FCC改變認定標準一事乃是恣意專斷的決定,從而撤銷FCC對於福斯節目之認定。對於法院之判決,FCC主席Kevin Martin表示遺憾以及難以置信,將會委請律師研議是否繼續上訴最高法院。
英國民航局發布航空AI監管策略三文件,以因應AI於航空領域之挑戰與機會英國民用航空局(United Kingdom Civil Aviation Authority, CAA)於2024年12月3日發布「CAA對新興AI驅動自動化的回應」(The CAA's Response to Emerging AI-Enabled Automation)、「航空人工智慧與先進自動化監管策略」(Part A:Strategy for Regulating AI and Advanced Automation in Aerospace)以及「CAA 應用AI策略」(Part B: Strategy for Using AI in the CAA)等三份文件。首先,前者概述CAA對於AI應用於航空領域之總體立場,強調以確保安全、安保、消費者保護及環境永續等前提下,促進AI技術在相關航空領域之創新與應用;其次,「航空人工智慧與先進自動化監管策略」著重說明如何於航空領域監管AI技術之使用,以兼顧推動創新並維持安全性及穩健性;最後,「CAA 應用AI策略」則聚焦於CAA內部使用AI技術提升監管效率與決策能力的策略。 由於AI正迅速成為航空產業之重要技術,其應用範圍包含航空器、機場、地面基礎設施、空域、航太、消費者服務等,具有提高航空安全性、運作效率、環境永續性與消費者體驗之潛力。然而,相關技術風險與監管挑戰亦伴隨而至,仍需新的監管框架應對潛在風險。因此,總體而言CAA以推動AI創新技術、提升航空產業效率與永續性為目標,透過了解技術前景、建立AI通用語言,並以航空領域之五大原則為監管框架之制定核心,建立靈活的AI監管體系,維持最高水準的安全保障。五大原則及案例分述如下: (1) 安全、安保與穩健性(Safety, Security and Robustness),例如:使用AI分析航空器感測器資料進行預測維護,以利提早發現問題。 (2) 透明與可解釋性(Transparency and Explainability),例如:清楚記錄AI系統如何提出空中交通路線建議。 (3) 可質疑性與矯正機制(Contestability and Redress),例如:制定一套明確的流程,以便航空公司查詢並了解AI生成的安全建議。 (4) 公平與偏見(Fairness and Bias),例如:確保自動化旅客篩查安檢系統公平對待所有旅客。 (5) 問責與治理(Accountability and Governance),例如:明確界定AI系統在機場運營中的監管角色與職責。 .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}