任天堂將自YOUTUBE影片上傳者收取利潤

  YOUTUBE遊戲頻道 - Rooster Teeth’s Let’s Play的建立者Lewis Turner近期擁有111部上傳遊戲剪輯並超過74890次瀏覽量,現被任天堂(NINTENDO)控訴侵害著作權。

 

  任天堂依YOUTUBE的Content ID政策,向Lewis Turner主張凡運用任天堂遊戲剪輯而賺取收益的部分,一旦這些剪輯被識別包含Content ID所認定之完整或部分的內容,均被要求需支付獲利予任天堂。Content ID為YOUTUBE 的著作權政策,有助保護企業並控制相關影片上傳的內容,藉識別使用者上傳的相關影片(視訊或音訊)的內容,與著作權人提供的內容比對是否侵權的功能,進而採取預先選擇的處理方式,如:透過影片賺取收益或封鎖這類的影片。

 

  許多玩家習慣將時下流行的遊戲闖關歷程上傳至社群網站與其他玩家分享,展現如何破解高難度關卡,或進階的闖關技巧,任天堂此舉,招來許多玩家的不滿,甚至表示再也不玩任天堂的遊戲或上傳更多的遊戲歷程剪輯。一名”Let’s play”玩家表示:「電動遊戲非如電影或電視;當我看到別人正在看的影片,我可能不會再去看;但當我看到別人正在玩的遊戲,我會想自己體驗。每個遊戲過程,都有其獨特視覺經驗,藉由瀏覽遊戲歷程能夠引起購買慾望。」

 

  對此,任天堂則聲明,若是為了持續推動並確保為任天堂的遊戲,仍可透過社群平台分享,即玩家仍可繼續在YOUTUBE上分享任天堂的遊戲歷程;而非像對待娛樂公司一樣,阻止玩家使用任天堂智慧財產權(著作權)的原因。

相關連結
※ 任天堂將自YOUTUBE影片上傳者收取利潤, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6306&no=55&tp=1 (最後瀏覽日:2026/02/07)
引註此篇文章
你可能還會想看
因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議

2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

紐約通過法案,將禁止企業使用未能通過偏見審計的自動化招募系統

  紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。   於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括: 一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。 二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。   如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。

日本公布第6期科學技術與創新基本計畫草案並募集公眾意見,著重疫情與科技基本法修正後之因應

  日本內閣府於2021年1月20日發布「第6期科學技術與創新基本計畫」(科学技術・イノベーション基本計画,以下稱第6期科技創新基本計畫)草案,並自即日起至同年2月10日,對外徵求公眾意見。依2020年6月修正通過之日本科學技術與創新基本法(科学技術・イノベーション基本法,預定2021年正式公告施行)第12條規定,要求政府應就振興科學技術與創新創造的政策,擬定基本計畫並適時檢討調整,同時對外公告。而本次草案的提出,便為因應現行的第5期科學技術基本計畫即將屆期,啟動擬定下一期基本計畫。   依草案內容,第6期科技創新基本計畫延續Society5.0的願景,並以數位化及數位科技作為發展核心。但檢視至今的科技創新政策成效,數位化進程不如政策目標所預期;受COVID-19疫情影響,也提升了科技普及化應用的重要性。另一方面,科學技術基本法的修正,則揭示了人文社會科學與自然科學跨域融合運用的方向,並期待藉由創新創造納為立法目的,實現進一步的價值創造。基此,第6期科技創新基本計畫提出,應從強化創新、研究能量及確保人才與資金的三方向為主軸,結合SDGs、數位化、資料驅動及日本共通在地價值,建構出「日本模型」(Japan Model)作為實現Society5.0的框架。   針對如何強化創新能力、研究能量及確保人才與資金,計畫草案提出以下方向: (1)強化創新能力:整體性強化創新生態系(innovation ecosystem),建構具韌性的社會體系,並有計畫地推動具社會應用可能的研發活動。具體作法包含藉由AI與資料促成虛擬空間與現實世界的互動優化、持續縮減碳排放量實現循環經濟、減低自然災害與傳染病流行對經濟社會造成的風險、自社會需求出發推動產業結構走向創新、拓展智慧城市(smart city)的應用地域等。 (2)強化研究能力:鼓勵開放科學與資料驅動型之研究,並強化研究設備、機器等基礎設施的遠端與智慧機能,推動研究體系的數位轉型;以資料驅動型為目標,多元拓展具高附加價值的研究,包含生命科學、環境、能源、海洋、防災等領域;擴張大學的機能,如增進大學的自主性,從經營的角度調整與鬆綁國立大學法人的管理與績效評鑑方式等,用以厚植創新基底。 (3)人才培育及資金循環:目標培養具備應變力與設定議題能力的人才;同時藉由資助前瞻性研發,結合大學的基礎科研成果,激發創新的產出及延伸收益,並回頭挹注於研發,建立研發資金的循環運用體系。

把生物廢棄物變黃金—英國智庫建議政府應提供更多的財務協助

  當前科學家正極力從廢棄的生物物質(biomass)中,尋找可以做為燃料使用的資源(biofuel)。使用生物燃料的概念與全球氣候變遷以及石油價格一再攀高有關,生物燃料是指在不影響食物供應的前提下,使用木材、稻桿或麥桿、庭園廢棄物等作為第二代的燃料來源。不過在鼓勵發展生物燃料之餘,發展此一領域之技術卻亦有不可忽略的問題有待解決。   以英國為例,英國法律規定在2010年以前,英國政府必須確保所有公路運輸使用的燃料中,至少有5%是使用生物燃料;而最近英國的能源檢視報告則建議,在2015年前,此項生物燃料使用的門檻值應達10%。英國國家非食用作物研究中心(National Non-Food Crops Centre, NNFCC)近期也提出報告,指出英國每年農作收成後皆剩餘大量的小麥、甜菜,若能輔以更多的政府促進措施,例如租稅減免,則達成2010年5%的門檻指標,並非難事。不過若想要達成2015年10%的指標,英國政府則必須另外從國外進口生物燃料。   生物廢棄物的利用指的是把各地方的廢棄物以及非食用作物拿來轉化成為生物燃料。使用生物燃料最大的缺點是建置成本(start-up costs)過高,舉例來說,使用甜菜或黃豆來生產生質柴油(biodiesel)的成本,每英噸約為700至800歐元,其中把生物廢棄物液態化的過程(biomass to liquids (BTL) process),約需每英噸450至500歐元;而要建置一個第一代生物燃料廠乃至運作,其投資費用高達5千萬歐元,第二代生物燃料的生產所需建置成本,則可能為前述數字的五至十倍。有鑑於此,NNFCC透過經濟模式的運算,建議英國政府應對第二代生物燃料廠提供每公升至少35%的租稅減免優惠(目前英國政府僅給予每公升20%的租稅減免優惠),始能鼓勵民間部門進行相關投資。   另一項發展生物燃料的隱憂則是,由於生物燃料與食物的來源都是取自於自然界的同一資源,發展生物燃料是否反而可能造成食物與燃料的爭戰中,侵蝕自然界的資源,最後反而導致各種價格的上升。

TOP