YOUTUBE遊戲頻道 - Rooster Teeth’s Let’s Play的建立者Lewis Turner近期擁有111部上傳遊戲剪輯並超過74890次瀏覽量,現被任天堂(NINTENDO)控訴侵害著作權。
任天堂依YOUTUBE的Content ID政策,向Lewis Turner主張凡運用任天堂遊戲剪輯而賺取收益的部分,一旦這些剪輯被識別包含Content ID所認定之完整或部分的內容,均被要求需支付獲利予任天堂。Content ID為YOUTUBE 的著作權政策,有助保護企業並控制相關影片上傳的內容,藉識別使用者上傳的相關影片(視訊或音訊)的內容,與著作權人提供的內容比對是否侵權的功能,進而採取預先選擇的處理方式,如:透過影片賺取收益或封鎖這類的影片。
許多玩家習慣將時下流行的遊戲闖關歷程上傳至社群網站與其他玩家分享,展現如何破解高難度關卡,或進階的闖關技巧,任天堂此舉,招來許多玩家的不滿,甚至表示再也不玩任天堂的遊戲或上傳更多的遊戲歷程剪輯。一名”Let’s play”玩家表示:「電動遊戲非如電影或電視;當我看到別人正在看的影片,我可能不會再去看;但當我看到別人正在玩的遊戲,我會想自己體驗。每個遊戲過程,都有其獨特視覺經驗,藉由瀏覽遊戲歷程能夠引起購買慾望。」
對此,任天堂則聲明,若是為了持續推動並確保為任天堂的遊戲,仍可透過社群平台分享,即玩家仍可繼續在YOUTUBE上分享任天堂的遊戲歷程;而非像對待娛樂公司一樣,阻止玩家使用任天堂智慧財產權(著作權)的原因。
為試驗導入智慧防救災各項新興技術與機制,英國國民緊急事務秘書處 (Civil Contingencies Secretariat, CCS) 於2013年秋天分別對北約克郡 (North Yorkshire)、格拉斯哥 (Glasgow) 和薩福克郡 (Suffolk) 三地區進行共三次的「公共緊急警報:行動通訊預警試驗」(Public emergency alerts: mobile alerting trial)。由於英國已有92%民眾具有行動電話,並以隨時得接收訊息為出發點,進行有別於傳統預警系統之公共緊急預警系統試驗。此試驗由國民緊急事務秘書處與O2、Vodafone和EE三間行動網路業者 (mobile network operators) 和地方政府應變單位合作,雖係以行動電話為試驗主軸,但試驗重點則以政府或地方政府應變單位「不知道」民眾個人電話,亦不要求民眾簽署才能取得此次試驗訊息為主。 此三次試驗手段有二,包括「小型區域廣播服務」 (cell Broadcast service, CBS),係以單點對多點發送緊急簡訊,以及「以地區為基礎的簡訊」 (location-based SMS messaging),以群組方式發送簡訊至指定地區用戶,二種發佈緊急訊息的方法為試驗。 北約克郡 (North Yorkshire)主要與EE進行發送緊急水災警報系統,對於廣播訊息發送的時間或調整時間長短以供傳送「泡沫警報」(表訊息多寡)到地域寬廣或數個地區而言,是有效的手段。格拉斯哥 (Glasgow)地區為蘇格蘭最大城市,與O2業者進行最大型的試驗,發送數千緊急訊息給民眾。而薩福克郡(Suffolk)則是由於該區不僅於市中心具兩個火車站,遊客也眾多,因此試驗場域以住商混合住宅區及處於該區的人民為主。除小型區域廣播服務和以地區為基礎的簡訊外,薩福克郡也與社交網路Twitter合作,共傳送三種訊息試驗。 透過上述試驗,公共緊急警報:行動通訊預警試驗計畫報告也提出針對隱私與對於電信服務業者於災害發生當下之通訊服務義務未來應制訂相關規範,以及應統一發送訊息之通訊警報協定標準等建議。
日本文化廳發布《人工智慧著作權檢核清單和指引》日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。
「巨量資料應用」當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。 在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。
跨平台應用程式的開發探討-以資料流動因應措施為中心