醫療器材審核制度仍有爭議 歐洲議會延後表決時程

  在歐盟發生了諸如法國隆乳植入物醜聞(PIP scandal)以來的諸多事件後,歐盟醫療器材審核制度的革新更顯得刻不容緩。然而,歐盟執委會提案修正過往歐盟對於醫療器材之相關規範,強化市場化前(pre-market)的審核機制,引起了各界不同的意見,因此本年七月初,歐洲議會決定延後新指令修正案的表決至9月,以爭取時間取得各成員國代表間的共識。

 

  為強化對於患者健康的保障,歐盟執委會(European Commission)於2012年提出醫療器材規則修正案(Proposal for a Regulation of the European Parliament and of the Council on medical devices),並包括對2001/83號指令等(Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009)的修正,已建立更完善的歐盟醫療器材管理機制。其中包括歐盟統一而集中的審核程序,此舉卻引起不同意見,認為過於科層化(bureaucratic)的市場化前審核制度設計,將阻礙研發且不見得對病患有利。有歐洲議會議員指出,現行制度雖有進化的必要,然集中化(centralisation)的審核工作,對於行政負擔的加重,或許不如先在各國家層級的管理機制進行強化。而歐盟醫療器材產業界也認為,集中統一化的審核機制,將會對於中小型研發企業造成衝擊,間接影響歐盟醫材類技術領域的科技研發,業界認為,新法案對於所謂對患者具有高風險第三類醫療器材(Class III devices)的審核,將使得患者延遲3至5年才能得到可以拯救其性命的產品,相對地卻沒有得到甚麼安全的提升。

 

  七月初,歐洲議會公共健康與食品安全委員會(Public Health and Food Safety Committee, ENVI)決議將推遲法案表決至9月18日,屆時表決的結果,將主導未來歐盟醫療器材管理的主要方向。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 醫療器材審核制度仍有爭議 歐洲議會延後表決時程, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6307&no=55&tp=1 (最後瀏覽日:2025/05/21)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

英國運輸部向議會提交《2023年公共充電樁規則》草案,規範充電樁規格標準

英國運輸部(Department for Transport)2023年7月11日向議會提交《2023年公共充電樁規則(Public Charge Point Regulations 2023)》草案,希望改善電動車駕駛的充電體驗。草案是根據《2018自動與電動車法(Automated and Electric Vehicles Act 2018)》授權,規定一系列充電樁營運商必須遵守的充電樁規格標準,充電樁營運商若未遵守相關規定,最高可處以每座充電樁1萬英鎊之罰鍰: 一、定價及費用透明:充電樁營運商必須清楚標示每時段定價,以便士/瓩時(p/kWh)作為計價單位。每次充電後必須顯示充電總費用。 二、須提供24小時免費客服專線:充電點營運商須提供免費24小時專線,支援客戶服務。同時將客戶所提出的問題、解決方式和時間做成紀錄。 三、開放資料:充電樁營運商必須遵守開放式充電協議(Open Charging Point Interface, OCPI),建構開放式充電網絡,消除漫遊服務資料存取的障礙,免費公開充電樁位置、充電狀態、功率等充電樁相關資料。 四、感應式支付:所有新的8瓩以上公共充電樁,及現有快速公共充電樁必須提供消費者零接觸、無現金支付選項。 五、99%可靠性:所有快速公共充電樁,可靠性要求必須高達99%(即99% 的時間可以正常使用),並在網站公開充電樁可靠性資料。 六、充電漫遊支付服務(Payment roaming):充電樁營運商必須至少和一家第三方充電漫遊服務供應商(roaming provider)進行合作,使消費者可以透過漫遊服務,使用同一APP或具RFID感應功能的卡片,支付不同充電樁營運商的充電費用。

美國EPA計劃創建三大生質能源研究中心

  美國能源局(EPA)宣布,將創建三個生質能源研究中心(bioenergy centers),以研發將植物轉化為燃料的技術方法。此舉乃是布希總統作出美國在未來十年內將降低20%的石油用量之政策宣布後,第一個採取具體配套行動的聯邦政府機關。   生質能源研究中心設立的宗旨是希望在未來五年內能夠以先進技術,成功開發生質能源的產品上市。根據EPA的對外公告資料,三大生質能源研究中心將以公司組織的形式運作,每一個研究中心總投入資本將高達1億2千5百萬美元,三大研究中心分別是位在田納西州Oak Ridge、威斯康辛州的Madison以及加州Berkeley附近,這些區域原本就是重要的研究重鎮,匯聚許多的大學、國家實驗室以及私人企業,形成產業聚落,預計三大生質能源研究中心將自2009年9月1日起的預算年度開始運作。   EPA希望藉由研究中心的聚落效應,集中資源協助這些研究中心從自然界中破壞木質素(lignin)的微生物出發,找出植物的確切細胞膜質(cellulose)之所在。細胞膜質或稱纖維素,是轉化成為乙醇、液態燃料等能源的重要來源物質,因此這些生物運轉機制的瞭解與掌握,乃是開發生物能源技術的基礎。   值得注意的是,各國致力於發展生物燃料以替代汽油的政策,已經使得某些兼具多種用途的作物價格持續攀升,此可由國際期貨市場價格獲得印證。為避免生物燃料的發展反而造成食用作物的搶奪大戰,影響作物市場價格,研究中心也將致力於尋找可以製造較易處理的木質素的新作物種類。

加州通過學生線上個人資料保護法案(the Student Online Personal Information Protection Act)

  隨著越來越多學校使用線上教育技術產品發展教學課程,並透過第三方服務提供者之技術蒐集學生的學習進度等相關資訊,資訊洩漏、駭客入侵、敏感資訊誤用或濫用等問題也因應而生。於2014年9月30日,加州州長Jerry Brown宣布幾項對加州居民隱私保護具有重要突破的法案,其中最引人關注的便是編號SB1177號法案,又稱學生線上個人資料保護法案(the Student Online Personal Information Protection Act,簡稱SOPIPA)。   SOPIPA禁止K-12學生線上教育服務經營者(operator)為下列行為,包括:(一)禁止線上教育服務經營者利用因提供服務所得之個人資料為目標行為(targeted marketing)、(二)禁止線上教育服務經營者基於非教育目的,運用因提供服務所得之個人資料為學生資料之串檔、(三)販賣學生之資訊、以及(四)除另有規定,禁止披露涵蓋資訊(covered information)。所稱之涵蓋資訊係指由K-12教育機構之雇員或學生所提供或製作之個人化可識別資訊(personally identifiable information),或是線上教育服務經營者因提供服務所得之描述性或可識別之資訊(descriptive or identifiable information)。   此外,SOPIPA線上教育服務經營者應採取適當安全的維護措施,以確保持有之涵蓋資訊的安全。同時,線上教育服務經營者應在有關教育機構的要求下,刪除學生之涵蓋資訊。   SOPIPA預計於2016年1月1日生效,將適用於與K-12學校簽有契約之大型教育技術與雲端服務提供者,同時也將適用於未與K-12學校簽署契約,但為該學校所使用之小型K-12技術網站、服務或APP等等。

TOP