為降低美國人民在醫療保險費用的支出,同時加強管理現有的保險產業,同時提供美國人民一更易負擔的醫療保險制度,美國總統歐巴馬自上任以來遂特別加強推動美國健康保險制度,與相關現有醫療保險制度的建置與改革,並於2010年3月23日通過「病患保護與平價醫療法案」(The Patient Protection and Affordable Care Act,本法暱稱Obamacare),並計劃於今(2013)年10月正式啟動上路。
為集中且便利相關機構快速讀取單一個人之相關資訊,Obamacare計畫透過聯邦數據服務樞紐(The Federal Data Services Hub)的建置,彙整目前美國各單一政府單位所保有之全民個人資料,該類資料涵蓋個人醫療、教育、和財務等相關資訊,提供各州政府單位機關有需求時得以讀取。然而,儘管該服務樞紐的用意係為提供更完整的個人資料,然而其卻也因其本身具集中單一個人資料於一身的特性而受到各界的質疑。反對人士認為,由於該服務樞紐彙整龐大單一個人資料,因此若其未建立完善資訊安全機制,而遭受到不肖駭客入侵竊取個人資料的話,所造成的後果將影響甚遠,再加上未來將管理服務樞紐的美國衛生及公共服務部(The Department of Health and Human Services, HHS),遲遲未能讓外界信服其已建立充分的資訊安全保全系統來保障全美國人民的個人資料,因此反對人士對於該服務樞紐對於個人資料安全與隱私的保全能力感到堪慮。
根據美國隱私法(Privacy Act of 1974),美國政府需提供適當的隱私保全機制來保障美國人民的個人資料,同時,美國聯邦資訊安全管理法(Federal Information Security Management Act of 2002)亦要求美國政府需確保美國人民的個人資料不被濫用,故在該二法案的明文要求下,歐巴馬政府於推行Obamacare之際,相關資訊安全保全系統機制仍須符合標準始得合法運作。Obamacare上路在即,歐巴馬政府與相關部會該如何解決個人資料保護問題,其後續發展實值得觀察。
本文為「經濟部產業技術司科技專案成果」
美國華盛頓州《我的健康我的資料法》(My Health, My Data,以下簡稱該法)於2024年3月31日生效,該法係於2023年4月27日通過。目標在於保護華盛頓州消費者的健康資料,特別是生殖健康相關資料(data related to reproductive healthcare)。所拘束對象並不在HIPAA之監管範圍內,包括穿戴式裝置(wearables)、特定零售購物和非HIPAA 所規範之遠距醫療服務(telehealth services)所蒐集之資料。 該法最繁瑣合規要求之一為,受監管對象必須在其主頁上公佈消費者健康資料相關隱私權政策(下統稱隱私權政策)連結,連結必須為獨立、特定且不得包含該法所未要求之額外資訊。另針對小型企業,則設有三個月之緩衝時間,即應於 2024 年 6 月 30 日前遵循該要求。 隱私權政策必須清楚且醒目地揭露以下內容: 1. 所蒐集之健康資料類別和蒐集目的,包括將如何使用這些資料; 2. 所蒐集健康資料來源及類別; 3. 共享之健康資料類別; 4. 共享消費者健康資料的第三方或相關企業之類別;以及 5. 消費者如何行使該法所賦予之權利,包括撤銷同意和要求刪除之權利。 最重要的是,除特殊情形外(即1.已揭露其他特定目的2.取得消費者對其他特定目的所為蒐集、使用、揭露之明確同意),受監管對象不得基於隱私權政策中未明確揭露之任何其他目的,蒐集、使用或共享消費者健康資料。 若違反該法相關規定,即被視為違反《華盛頓州消費者保護法》(the Washington Consumer Protection Act),可由華盛頓州總檢察長提出強制執行。另該法為美國第一部保護大量健康資料之法律,顯現對消費者資料保護監管逐漸嚴格之趨勢。
日本知名連鎖旋轉壽司發生營業秘密外洩爭議,顯示企業建立及持續推動內部機密資訊管理制度之重要性東京地方檢察廳於2022年10月21日以違反《不正競爭防止法》等為理由,起訴被告「かっぱ寿司」之營運公司「カッパ・クリエイト」公司(下稱Kappa壽司)及其前社長田辺公己(下稱田辺)等。因本案牽涉上市企業的前社長,故引起日本社會極大關注,東京地方法院已於2022年12月22日召開首次審理庭。 本案被告田辺在1998年加入「はま寿司(下稱Hama壽司)」之母公司,並於2014年到2017年間擔任Hama壽司董事;嗣後在2020年11月時,轉職至Kappa壽司。雖然田辺在離職時已簽署保密協議,但在離職前後數月間,持續透過不正當方式,取得Hama壽司之食材成本及其供應商等資訊,同時更指示仍任職於Kappa壽司之部屬製作Kappa壽司與Hama壽司之成本對照表,並以郵件方式提供被告,被告再於Kappa壽司內部使用。 雖然Kappa壽司嗣後發表公開聲明,強調並無跡象顯示該公司曾依據相關成本對照表,進行開發新產品或更換批發商等措施,但田辺在審理庭上,已承認指控,而且在被捕時,曾坦言行為動機為希望提高業績。 對於本案,有日本輿論指出海外因應人員轉職較頻繁,對於機密資訊之管理,通常訂有較嚴格的規定,惟日本目前欠缺相關觀念;亦有論者認為因為必須符合營業秘密之法定要件,始受《不正競爭防止法》之保護,故強調機密管理對於保護商業秘密及針對機密外洩之法律救濟的重要性。從本案觀之,任何產業類型的企業都可能會有屬於營業秘密的資訊,為維護企業的商業競爭力,避免因營業秘密外洩影響公司營運,企業應建立及持續推動內部機密資訊管理制度,並因應社會與管理環境變化等,精進管理模式。同時應定期進行教育訓練,提高人員的機密保護意識,強化營業秘密外洩事件發生時的舉證,以有效的主張權利。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
搜尋引擎業者刪除特定檢索結果之判斷基準-日本最高法院平成28年(許)第45號(平成29年1月31日裁定) 合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。