美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。 該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。 此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。
新加坡資料共享法制環境建構簡介新加坡資料共享法制環境建構簡介 資訊工業策進會科技法律研究所 2019年12月31日 壹、事件摘要 如何有效運用資料創造最大效益為數位經濟(Digital Economy)重點,其中資料共享(data sharing)是有效方法之一。新加坡自2018年以來推動「資料共享安排」機制(Data Sharing Arrangements, 下稱DSAs)與「可信任資料共享框架」(Trusted Data Sharing Framework),建構資料共享環境,帶動國內組織[1]資料經濟發展與競爭力。 貳、重點說明 自從2014年新加坡政府推行「2025智慧國家(Smart Nation)」以來,即積極鋪設國家數位經濟建設,大數據資料分析等數位科技發展為其重點,預估2022年60%國內生產總值將與數位經濟有關[2] 。其中,希望透過資料共享促進組織、政府、個人三方間資料無障礙流通,降低蒐集、處理與利用成本,創造更多合作機會進行創新應用,因此從法制面、環境面與技術應用層面打造完善的資料共享生態系統(data sharing ecosystem)[3]。 然而依據《個人資料保護法》(Personal Data Protection Act 2012,下稱個資法)第14條以下規定,組織蒐集、處理與利用個人資料應取得當事人同意,除非符合第17條研究目的等例外情形。由於資料共享強調可將資料進行多節點快速傳遞近用,使資料利用價值最大化,因此若依據個資法規定每次共享皆須事前獲得當事人同意,將使近用成本增高並間接造成資料流通產生障礙。因此為因應國家政策與產業需求,新加坡個人資料保護委員會(Personal Data Protection Commission, 下稱個資委員會)依據個資法第62條所賦予的豁免權(exemption),個人或組織可在遵循個資委員會訂定的規則下,依照個案給予組織免除個資法部分規範[4] ,而DSAs機制即是一種[5]。 DSAs是由個資委員會於2018年設立的沙盒(sandbox)計畫,如組織所進行的共享模式是在特定群體並範圍具體明確,同時不會造成個人有負面影響等情事,可在不須經個人同意下進行資料共享[6]。並且,為進一步提升組織與消費者間信任,2019年6月個資委員會與資訊通信媒體發展局(Info-Communication Media Development Authority of Singapore,下稱資通發展局)共同推出「可信任資料共享框架」指南建議,由政府擔任監管角色,組織只要符合指南建議方向,如遵循法律、達到一定資料技術應用品質與實施資安與個資保護措施下,可以進行個人與商業資料之共享,DSAs機制是共享方法之一。以下簡述新加坡個資法規範、指南建議與DSAs機制運作方式。 圖1:資料共享環境建構 資料來源:新加坡資通發展局 一、新加坡個人資料保護法規範 在沒有個資法第17條所列之例外情形下,依據第14條以下規定,組織如近用個人資料應獲得個人同意,同時應符合目的使用及通知義務,尤其應給予個人可隨時撤回同意之權利[7]。 同時組織應根據個人要求,提供近用個人資料之方法、範圍與內容,以及更正錯誤資料權利[8]。並且組織必須任命資料保護官(Data Protection Officer, DPO)隨時向大眾提供通暢的個資聯絡管道,來確保個資透明性與完整性[9]。 在資料保護措施上應有合理安全的資安防護技術,以保障資料不被未經授權近用的風險。當使用目的不在時,需妥善保留或予以去識別化,同時如須境外轉移資料時,境外之資料保護措施應至少與新加坡個資法規範標準相同[10]。 二、免除同意之DSAs機制 DSAs機制是由個資委員會於2018年設立的沙盒(sandbox)計畫,也就是組織可透過申請免除資料共享前必須獲得個人同意之規範。然而如組織擬向個資委員會申請DSAs機制,必須符合三個條件[11]: 共享範圍需在特定群體、期間與組織內:即只限定在具體特定的應用情境內,若超出申請範圍,例如分享至其他非申請範圍的組織,則須再經過個資委員會批准[12]。 近用目的需具體明確:即資料共享必須應用於特定且明確目的,如以「社會研究目的」作為申請則範圍過大不夠明確[13]。 近用資料對於個人不會有不利影響,或公共利益大於個人利益:例如共享目的不是直接用於銷售或存在合法利益,或是共享本身具備公共利益且明顯大於個人可預見的(foreseeable)不利影響,此時個資委員會可考慮同意組織申請免除[14]。 三、建立以信任為基礎之資料共享模式 雖然取得DSAs機制免除同意可以使資料近用方式更為簡便,然而在進行資料共享前,仍應有完善的技術品質與資安保護措施,因此在「可信任資料共享框架」指南建議中,組織應透過法律遵循、導入AI或區塊鏈等新興技術,並具備相應資安保護措施來建構可信任的資料共享環境,實際步驟可分為以下四階段[15]: 圖2:可信任資料框架 資料來源:新加坡資通發展局 第一階段為「資料共享建構」[16],由組織自行評估存有的商業或個人資料是否具共享價值與潛在利益,並要如何進行共享,例如資料共享方式屬於雙邊(bilateral)、多邊(multilateral)或是分散式(decentralized,又稱「去中心化」)。以及資料種類有哪些,如主資料(master data)、交易資料、元資料(metadata)、非結構化資料(unstructured data)等。組織可將資料共享方式、種類依據無形資產(intangible asset)評價方式,即市場法(market approach)、成本法(cost approach)與收入法(income approach)三種評價方法進行評價,來衡量共享之價值性。除資料價值判斷外,組織必須自行評估自身組織與將來之合作夥伴是否有足夠能力管控共享之資料,包括是否具備一定技術能力的資安與資料保護措施等。 第二階段為「法律規範考量」[17],即決定哪些資料可以進行共享,從規範面檢視個資法、競爭法與銀行法等是否有例外不得共享規定,例如信用卡號碼或個人生物識別資訊不得共享。若資料共享類型不會對個人造成不利影響或具備公共利益,並有通知(notification)個人給予選擇退出(opt-out)的機會,組織可依個案申請DSAs機制之豁免。同時另外鼓勵組織向IMDA申請資料保護信任標章(Data Protection Trustmark, DPTM)認證,透過認證機制使消費者更能信任組織運用其個人資料[18]。 第三階段為「技術組織考量」[19],包含組織是否有能力建立資安風險管理與個資侵害之因應措施,是否有即時將資料安全備份技術,並針對不同傳輸技術如有線/無線網路、遠端存取(VPN)、應用程式介面(API)、區塊鏈等區分不同資安防護與風險管理能力。 最後一階段為「資料共享操作」,當已準備進行資料共享時,需再次檢視是否已符合前三個階段,包含透明性、責任義務、法律遵循、近用資料方式與取得目的外利用同意等[20]。 參、事件評析 個人資料視為21世紀驅動創新的重要價值,我國部會亦開始討論「個資資產化」的可能[21]。面對數位經濟時代來臨,有效運用數位科技將潛藏個人資料的大數據進行加值利用,不僅有利組織與創新發展,更可回饋消費者享有更好的產品與服務。 新加坡政府以資料共享作為數位經濟發展重點方向之一,在具備一定程度技術能力、資安保護措施與組織控管之條件下,可向主管機關申請免除個人同意之規範。透過一定法規鬆綁讓資料利用最大化以創造產業創新價值,同時依據主管機關要求的保護措施,使消費者信賴個人資料不會遭受不當利用或侵害。DSAs機制與「可信任資料共享框架」指南之建立,適時調適個人資料保護規範與資料應用間的衝突,並提供組織進行資料共享之依循建議,作為推動該國數位經濟發展方針之一。 [1]組織(organisation)依據新加坡個人資料保護法(Personal Data Protection Act 2012)第2條泛指個人、公司、協會、法人或團體。 [2]INFOCOMM MEDIA DEVELOPMENT AUTHORITY 【IMDA】, Trusted data sharing framework (2019), at 7, https://www.imda.gov.sg/-/media/Imda/Files/Programme/AI-Data-Innovation/Trusted-Data-Sharing-Framework.pdf (last visited Sep. 11, 2019). [3]id. [4]Personal Data Protection Act 2012 (No. 26 of 2012) §62, “The Commission may, with the approval of the Minister, by order published in the Gazette, exempt any person or organisation or any class of persons or organisations from all or any of the provisions of this Act, subject to such terms or conditions as may be specified in the order.” [5]Data Sharing Arrangements, PDPC, https://www.pdpc.gov.sg/Overview-of-PDPA/The-Legislation/Exemption-Requests/Data-Sharing-Arrangements (last visited Dec. 1, 2019). [6]id. [7]IMDA, supra note 2, at 31; Personal Data Protection Act 2012 (No. 26 of 2012) §14, 16, 20. [8]id. Personal Data Protection Act 2012 (No. 26 of 2012) §21. [9]IMDA, supra note 2, at 31. [10]id. at 32. Personal Data Protection Act 2012 (No. 26 of 2012) §24-26. [11]id. [12]PERSONAL DATA PROTECTION COMMISSION【PDPC】, Guide to Data Sharing (2018), at 14, https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Other-Guides/Guide-to-Data-Sharing-revised-26-Feb-2018.pdf (last revised Oct. 3, 2019). [13]id. [14]id. [15]PDPC, supra note 4. at 28. [16]id. at 21, 23-25. [17]id. at 35 [18]id. at 30. Data Protection Trustmark Certification, IMDA, https://www.imda.gov.sg/programme-listing/data-protection-trustmark-certification (last visited Sep. 26, 2019). [19]id. at 41-47. [20]id. at 50-51. [21]林于蘅,〈自己的個資自己賣!國發會擬推「個資資產化」〉,聯合新聞網,2019/06/17,https://udn.com/news/story/7238/3877400 (最後瀏覽日:2019/10/1)。
歐盟智慧財產局公布2020年智財侵權狀況報告歐盟智慧財產局(European Union Intellectual Property Office)於今(2020)年第三季公布最新智財侵權狀況報告,研究報告為其智庫「歐盟智慧財產權侵權觀察平台(The European Union Observatory on Infringements of Intellectual Property Rights)」所執行,並結合經濟合作暨發展組織(Organization for Economic Cooperation and Development)之數據資料,每年以不同主題呈現當年世界智財侵權狀況。今年以「智財權為何重要、智財侵權與打擊仿冒之戰爭」為主題,重點如下: 智財密集產業對歐盟經濟貢獻占整體GDP的45%、就業人數占歐盟就業人口的29%、出口貨物量占96%。 企業對智財的重視比例增高,重視智財的企業雇員平均收入較不重視智財權者高出32%;運用智財於營運策略的中小企業成長潛力高於無智財權者,如依權利運用類型區分,其成長率分別是10%(商標)、16%(商標結合專利)、27%(商標與設計權),以及33%(三種權利組合)。 全球仿冒品占其貿易總量約3.3%,市值高達1,210億歐元。 除日常藥品,抗生素、癌症或心臟疾病藥物仿冒情形均趨於嚴重;2019年爆發新冠肺炎後,偽造商更是將仿冒移轉至檢測試劑與個人防護用品。 尤其進入AI與5G時代後,智財密集產業對世界經濟貢獻度可望逐年上升,但侵權狀況恐怕亦同,咎因於該產業之興盛與背後龐大的潛在利益。因此持續推動建立企業的智財意識與防護能力,有其必要性,以助於提升產業發展潛力與整體營運獲利。
美國聯邦首席資料長委員會指出2021年工作重點之一在於促進跨機關的資料共享2021年1月6日,美國聯邦首席資料長委員會(Federal Chief Data Officers Council, 後稱CDO Council)向美國國會提交報告,報告中指出今年度的工作重點之一將放在促進聯邦政府跨機關的資料共享,以極大化政府資料的價值。 CDO Council是根據2018年的《實證決策基本法》(Foundations for Evidence-Based Policymaking Act of 2018)所設立,並於2020年1月正式召開第一次會議,該委員會的成員包含聯邦政府各部會的首席資料長(Chief Data Officers, CDO)。該委員會的任務是加強各部會利用資料作為戰略資產的能力,促進聯邦政府資料的管理、使用、保護、傳播和衍生,以達到聯邦資料戰略(Federal Data Strategy)所設定的目標。 美國農業部首席資料長兼CDO Council主席Ted Kaouk表示,以農業部所建置的農業資料共通平台(Ag DATA COMMONS)為例,農業部所屬機關間透過資料共享,已產生許多應用。 譬如:該部所屬的食品與營養局(Food and Nutrition Service, FNS)利用經濟研究局(Economic Research Service, ERS)統計的糧食不安全(Food Insecurity)資料,推動食物箱計畫(Farmers to Families Food Box Program);農業部所屬風險管理局(Risk Management Agency, RMA)使用平台上其他單位的資料,作為作物保險(crop insurance)的決策依據;農業部所屬食品安全和檢驗局(Food Safety and Inspection Service, FSIS)使用平台上其他單位的資料,來追蹤肉品加工廠的狀況。 CDO Council於去(2020)年10月成立了一個資料共享工作小組(Data Sharing Working Group),負責研究聯邦政府各機關間資料共享的使用案例,希望透過這樣的努力,強化聯邦政府的資料治理,產生高品質與即時性的資料,以此作為政府的決策依據。