英國推動智慧電網 – 對隱私疑慮的回應與提供用戶能源使用量資訊之規劃

刊登期別
第25卷,第8期,2013年08月
 

本文為「經濟部產業技術司科技專案成果」

※ 英國推動智慧電網 – 對隱私疑慮的回應與提供用戶能源使用量資訊之規劃, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6339&no=66&tp=1 (最後瀏覽日:2025/04/04)
引註此篇文章
你可能還會想看
NHTSA要求自動駕駛系統及L2自動駕駛輔助系統回報意外事件

  美國國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)2021年6月29日 「自駕車與配備等級2駕駛輔助系統車輛之意外事件回報命令(Standing General Order 2021-01:Incident Reporting for Automated Driving Systems and Level 2 Advanced Driver Assistance Systems)」,課予系統製造商與營運商意外事件回報義務,重點如下: (1)適用範圍:全美境內公共道路上發生之車輛碰撞事件,事發前30秒至事件結束期間內曾經啟用等級2駕駛輔助系統或自動駕駛系統。 (2)意外事件定義:事件中任何一方有人員死亡或送醫治療、車輛必須拖吊、安全氣囊引爆或事件涉及弱勢用路人(vulnerable road user)。 (3)回報期限:須於知悉事件後隔日立即回報,知悉後10日傳送更新資料,如後續仍有發現新事證,應於每月15號傳送更新。自駕車發生碰撞,即使無人傷亡、無車輛拖吊或安全氣囊引爆,仍需於次月15號傳送事件回報。 (4)回報方式及項目:需至NHTSA指定網站註冊帳號,線上填寫制式通報表格。項目包含車籍資料、事件時間、地點、天候、路況、傷亡及財損情形等等。   NHTSA收到的回報資料,原則上會在將個人資料去識別化後對大眾公開,惟若系統製造上或營運商主張部分資訊為商業機密,可另行向NHTSA之諮詢辦公室通報審核。如逾期未報或隱匿資訊,可處每日最高22,992美元罰金,累計最高罰金為114,954,525美元。

英國設立綠色財政委員會,檢討未來稅制綠化的方向

  英國為了達到稅制綠化的目標,特別在2007年底設置了一個集合產官學背景人員及消費者與環保組織代表組成的稅制檢討委員會-綠色財政委員會(Green Fiscal Commission, GFC)。GFC定位為獨立的組織,其任務是在未來的一年半期間,針對英國如要導入綠色稅與環境稅的稅制變革(green taxes and environmental tax reform, ETR),檢視完成其所涉及的相關議題,特別是導入困難之處何在,以期將過往對財貨“good“(例如勞動活動所產生的所得或收入)課稅的精神,規劃轉向為對環境有害的結果“bad“(如環境損害)予以課稅,GFC預計在2009年4月提出正式的報告,而報告探討的重點將會集中在以下三大部分:   - 有關環境稅如何執行與操作之資訊與證據   - 有關社會大眾與利害關係人對於環境稅所持態度之資訊與證據   - 針對研究報告內容對外進行適當的溝通   英國欲進行綠色稅制改革,主要是基於歲收中和(revenue neutral)的考量,意指對財貨的租稅減免(tax cuts on ‘goods’)短缺,應透過對有害活動課稅所增加的稅收,予以平衡。英國政府希望可以藉由GFC的研究成果,成果進行綠色稅制改革,讓英國的稅收來源在2020年可以達到至少有20%是源自於綠色稅。

RFID應用發展與相關法制座談會紀實

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

TOP