於回顧過去10多年來在大學智慧財產相關的政策措施以後,日本科學技術振興機構(JST)智慧財產戰略中心於7月5日就「政策建言-回首長達十多年的大學智財相關政策措施並探求今後的發展」總結作出發表。根據外識學者專家所組成的JST智慧財產戰略委員會所作成的研議,其就大學智財此後所追求的目標願景,以及為達成該願景各個部門(政府、大學、技轉中心與JST)各自所應扮演的角色提出了整體的建議。
在建言中提到,大學智財的目標願景乃在於「以未來運用為導向擬定智財策略」與「確保研究成果轉化智慧財產,積極回饋國民社會」,並列舉各部門為達成目標願景所應執行之任務。
建言中主要提到的各部門任務如下所述:
【日本政府的任務】
‧對於大學的智財評價,不應只限授權金收入,也應考慮共同研究、創新育成(由大學孕育而生的新創企業)的創出效果。
‧應建構於獲得革新性的研究成果時,能夠搶先取得基礎專利、強化週邊專利的策略性的、機動性的強而有力的智財支援體制。
【日本大學、技轉中心的任務】
‧為創造強勢的專礎專利,應能確保具備優秀判斷力的人材,與應進行充分的先前技術檢索。
‧應以大學成果的早期實用化為導向,推進與中小、新創企業的合作關係。
‧思考大學間、技轉中心間多樣而有效果的合作形態,積極謀求提升技轉機會。
‧強化對學生與研究者的智財教育與智財進修。
【JST的任務】
‧研析早期而積極的智財發掘與迅速而機動的資金投入等等主動性的支援模式。
‧進行熟悉海外技術移轉的專業人材的配置與培育,且就對大學專利之權利侵害提供設置諮詢窗口等的支援措施。
‧促進大學閒置專利的海外技術移轉。
‧研議於鉅額資金投入而有多數大學、企業參與之特定大型計劃的場合,不受日本版the Bayh-Dole Act條款的限制,而由特定公共的機關等執行專利的管理。
美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
紐約市實施《生物辨識隱私法》強化生物特徵保護伴隨人工智慧、大數據及雲端運算浪潮,生物辨識技術逐漸成為日常生活的一部分。所謂生物辨識技術,是指利用個人獨特之生物特徵辨識個人的技術。生物特徵包含任何人類生理或行為特徵,只要能夠滿足普遍性、獨特性、不變性及可蒐集性 ,即可作為生物辨識之資訊。由於生物辨識技術能利用生物特徵達到識別與驗證個人身分,因而引發公眾對隱私、資安等議題的關注。 對此,紐約市於2021年7月21日也開始正式施行《生物辨識隱私法》(biometric privacy act) ,期能藉由限制業者利用生物辨識技術以及賦予消費者訴訟權利作法,促成隱私權的週全保障。 該法主要有三大部分: 一、規範生物辨識資訊範圍,包含但不限於(1)視網膜或虹膜掃描(2)指紋或聲紋(3)手或臉部立體掃描或是其他可用於識別之特徵。就前開生物特徵,要求業者應在所有消費者入口處放置清晰顯眼的標誌,搭配簡單易懂方式揭露其蒐集、保留、儲存消費者生物辨識資訊行為。同時,也明文禁止業者將消費者生物辨識資訊以販賣、租賃、交易或是分享方式交換任何相關價值或利益。 二、提供受侵害之消費者訴訟權與法定賠償請求權。但是,就單純未符合揭露要求之業者,該法給予30天的補救期間,要求消費者應於起訴前30天通知業者改善,一經改善即不得再起訴。 三、闡明政府相關部門不適用本法。金融機構、業者與執法部門共享生物辨識資訊,以及單純以影像、圖像蒐集而未分析識別情形則豁免揭露規範。 綜上,紐約市於該法創設訴訟權、法定賠償數額及豁免事由,預料將會是紐約市企業隱私保護政策重要指標,而值得我們繼續關注其發展與影響。
英國上訴法院法官對軟體專利之必要性表示懷疑英國上訴法院智慧財產法專業法官Robin Jacob於2006年1月13日對是否應該核發軟體專利感到懷疑,並對美國專利法所奉行的原則-「任何在陽光下由人類所創造之物,皆可以被賦予專利」-表示不能茍同。該法官認為,從美國軟體專利實務在搜尋既存技術(Prior Art)時之遭遇來看,將專利核發予事實上僅具一般性效能之軟體,為軟體專利不可避免的現象,如此一來,在搜尋既存技術的過程中將產生極大問題。 軟體專利存在的必要性一直受到以「自由資訊基礎建設基金會」(the Foundation for a Free Information Infrastructure,簡稱FFII)為首之社會運動團體之懷疑,但截至目前為止仍極少有針對此一爭議的研究。歐洲委員會為此補助一個「以法律、技術與經濟層面切入探討軟體專利對創新之影響」的研究計畫,惟該計畫需待2007 年方能有所成果。無獨有偶,歐洲議會於2005年7月駁回「軟體專利指令」(全名:the directive on the patentability of computer-implemented inventions,俗稱software patent directive),理由是,該指令之通過將造成歐洲軟體專利與美國一樣過度氾濫的窘境。
歐盟將推出「數位綠色證書」,促進疫情期間成員國內人員之安全入出境為防止新冠肺炎之傳播,欲入境歐盟的旅客被要求提供各式健康證明文件,然而在判斷該文件的真實性時,缺乏標準化的格式,導致旅客在入出境歐盟時產生各種問題,也容易產生欺詐或偽造文件的風險。為解決上述問題,歐盟委員會於2021年3月17日表示將推出「數位綠色證書」(Digital Green Certificate),證書分為三種,分別是:「已接種新冠肺炎疫苗證書」、「新冠肺炎檢測結果呈陰性證書」及「已從新冠肺炎痊癒證書」。透過綠色數位證書,希望能解決歐盟在疫情期間,各成員國人員入出境之安全問題。此證書預計將於所有歐盟成員國間通用,並對冰島、列支敦斯登、挪威和瑞士開放。 證書將免費以數位或紙本兩種形式提供,證書上之QR碼中將包含旅客必要個人資訊:姓名,出生日期,簽發日期,有關疫苗、檢測、恢復等等,並含有數位簽名,以確保證書之真實性及安全性。歐盟委員亦將成立一項計畫,使成員國開發特定的驗證軟體,以驗證某證書是否為歐盟所核發。 數位綠色證書不具強制性,將由成員國各自決定具體執行措施,且各成員國對持有數位綠色證書之旅客應公平待之,例如:成員國若接受某非數位綠色證書之疫苗接種證明而得免除某些檢疫或隔離,在相同條件下,成員國亦應接受數位綠色證書發出之疫苗接種證書而同樣免除該項檢疫或隔離。然而,歐盟目前僅接受下列四種被歐盟許可之疫苗:輝瑞(BioNTech Pfizer)、莫德納(Moderna)、AZ(AstraZeneca),及楊森製藥(Janssen Pharmaceutica),其他疫苗目前不被認可。此外,委員會並保證,持證人之個資並不會被成員國所留存。