歐盟議會今年(2013)10月8日,針對「菸草產品指令」修正草案(Revision of the Tobacco Products Directive)進行投票,擬將電子香菸納入藥用規範落實菸害防制。此次修正草案目的在於規範歐盟菸草產品內部市場運作,保障公眾健康,該修正草案要點歸納如下
(一)包裝與標示
嚴格規範菸草產品需標示有礙健康的訊息和警語,並以圖示與文字呈現。除涵蓋外包裝正面與背面的65%外,側邊應標記妨害健康之警示。
(二)成分與添加物
為預防青少年對菸品產生興趣,規定菸草產品的外部包裝與內容物部份,需讓消費者清楚瞭解,購買的菸草產品有危害健康之疑慮,尤其是禁止香甜或水果風味的菸品要求在包裝上印刷更多警示規範,例如:不得將菸草產品以糖果、化妝品等樣式包裝之;禁止添加巧克力、香草等添加物抑制菸草刺激氣味。
(三)菸草產品規範範圍
對未含菸草成份之菸草產品,研擬具體規範辦法,例如:電子香菸、草藥香菸,擴大菸草產品規範範圍。
菸草產品指令之修正案預計於明年(2014)通過,藉由該項修正案統一歐盟各會員國對菸害防制標準與共識基礎,以提高會員國對菸草使用的危機意識,增加對禁菸、戒菸政策落實之動力。
本文為「經濟部產業技術司科技專案成果」
日本政府為了對應智慧聯網(Internet of Things, IoT)、巨量資料(Big Data)以及人工智慧(AI)時代之到來,經濟產業省及總務省於2015年10月23日正式成立了產官學研聯合之「IoT推進聯盟( IoT推進コンソーシアム)」。該聯盟旨在超越企業及其產業類別的既有框架,以民間作為主導,目的為推動IoT之相關技術研發,以及促進新創事業成立之推進組織,未來並將針對IoT相關政策以對政府提出建言。在該聯盟下有三個工作小組,包括技術開發、實證、標準化的「智慧IoT推進論壇(スマートIoT推進フォーラム)」;推動先進實證事業,規制改革之「IoT推進實驗室(IoT推進ラボ)」,以及針對資訊安全、隱私保護的專門工作小組。 我國自2011年行政院首度召開「智慧聯網產業推動策略會議」以來,積極推動發展台灣成為全球智慧聯網創新中心,以及成為亞洲智慧聯網解決方案領先國;而目前我國有「台灣物聯網聯盟(TIOTA)」、「中華物聯網聯盟」等民間推進組織,旨皆為結合產官學研各界資源,促進產業與政府、國際間之合作。
加拿大公布新的企業個資保護自評工具加拿大聯邦政府與亞伯達省(Alberta)及英屬哥倫比亞省(British Columbia)的隱私委員會針對一般企業,聯合推出新的個人資料保護自我評量線上工具,該線上工具之內容包括風險管理、政策、記錄管理、人力資源安全、物理安全、系統安全、網路安全、無線、資料庫安全、作業系統、電子郵件和傳真安全、資料完整性和保護、存取控制、信息系統獲取,開發和維護、事件管理、業務連續性規劃、承諾等項目之評估測驗。 聯合制定該線上自我評量工具的隱私委員辦公室表示,該線上工具可用於任何私人組織,特別是小型及中小型企業,而且新的線上工具是針對企業為一全面性的評估,並且該評估的內容十分鉅細靡遺。另外,為了提供使用者於使用該線上工具時的靈活性,故使用者亦可以將重點放在最切合自己的企業的部分,亦即僅選擇其中一項或數項為自我評估的內容即可。 又,該線上自我評量工具會將使用者的自我評估和分析過程的結果做成結論,而使用者可以獲得該分析得出之結論,並將作成之結論用來有系統地為評估組織本身的個人資料保護安全性,並藉以提高個人資料保護的安全。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
人工智慧即服務(AI as a Service, AIaaS)人工智慧即服務(AIaaS)之定義為由第三方提供人工智慧(AI)外包服務,其可使個人和公司基於各種目的進行AI相關實驗,同時毋須於初期即大規模投資或承受高度風險。著名之四大AIaaS供應商為Amazon AWS雲端運算服務、Microsoft Azure 雲端運算平台與服務、Google雲服務、以及IBM雲服務。 AIaaS之優點主要有:(1)降低成本:一般公司無須投資軟體、硬體、人員、維護成本以及不同任務之修改成本,AIaaS供應商可供應不同之硬體或機器學習供公司嘗試運用。(2)即用性:AIaaS供應商提供之AI服務為即用性,無須太多專家介入修改即可使用。(3)可擴展性:可由較小之項目開始試驗,逐步擴張調整服務,因此具有戰略靈活性。然而,AIaaS亦有以下潛在缺點:(1)降低安全性:公司必須交付大量資料給AIaaS供應商,因此資料之機密保護與預防竄改即為重要。(2)增加依賴度:若發生問題時,必須等待AIaaS供應商進行處理。(3)降低透明度:由於是即用性之AI服務,對於內部演算法之運作則屬於未知之黑盒子領域。(4)限制創新:因AIaaS供應商所供應之AI服務需一定程度之標準化,因此限制公司創新發展之可能。