美國國會於今年5月針對美國發明法(Leahy-Smith America Invents Act,AIA)第18條提出擴張性修法。美國發明法第18條係規範專利改革過渡期間涵蓋商業方法專利之複審程序(Transition Program for Cover Business Method Patents Review, CBM),並且定有落日條款,預計將在2020年9月16日失效。本次修正案研擬將落日條款刪除以外,將適用對象從原先適用於金融產品或服務(a financial product or service)之商業方法專利(Business Method Patents)修正為適用於企業、商品或服務(used in the practice, administration, or management of enterprise、product or service)之商業方法專利,此將擴張商業方法專利複審程序之適用範圍。
奇異電子(GE Co.)、3M(3M Co.)、禮來(Lilly & Co.)、施樂(Xerox Corp.)等多家產業界知名公司於今年(2013)9月19日發出聯合信函反對美國國會此次針對美國發明法第18條的擴張性修法。信中表示本次修法將意味著數據處理專利(Data Processing Patents)等尖端的癌症治療方法到汽車安全系統等都可能包含在內,可提起專利侵權的範圍將擴大至難以界定的程度,再者刪除落日條款,會造成諸多不確定性與風險阻礙科技創新的持續投入。
然而,產業界並非意見一致,諸如谷歌(Google Inc.)、臉書(Facebook Inc.)、沃爾瑪(Wal-Mart Stores Inc.)等知名公司則立場相左,早於今年7月即率先表示贊成,聲明此次修法提供創新者一個積極保護自身專利的具體手段。由此足見歐巴馬政府與立法者在專利法制改革中,必然要面對難以預測的產業效應和衝擊,從而增加其制度改革策略思考和制度設計的難度。
本文為「經濟部產業技術司科技專案成果」
歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
IBM嘗試新方法支持開放原始碼IBM公司在2日拉斯維加斯舉行世界夥伴(PartnerWorld)會議時,宣布提倡開放原始碼創新的新措施,包括成立求職應徵者資料庫,以及一項電子學習計畫。這座資料庫預定今年第三季推出,屆時會把具有開放原始碼技術的大學生所投的履歷表一一編列成目錄。想被納入資料庫的資格,包括曾經參加IBM校園人才培訓計畫(Academic Initiative)中級程度以上,並通過IBM開放原始碼專業資格考試的人士。該資料庫提供IBM的企業客戶與商業夥伴檢索。起初,此資料庫只涵蓋北美洲地區,但IBM打算將來擴大推廣到世界其他地區。 該公司也將透過提供IBM校園人才培訓計畫,提供各校所需的中介軟體及硬體,而Hubs計畫本身不打算收費,或只酌收少許費用。第一座這種中心預定春季在德州A&M大學成立。 IBM另外在PartnerWorld宣布,計劃今年與商業夥伴共同成立100座新的「創新中心」( innovation centers)。藍色巨人先前已承諾投資1.5億美元開辦這類中心,讓系統整合業者、獨立軟體公司、附加價值流通業者以及解決方案服務提供者藉此取得IBM的技術與設備,以協助他們測試並最佳化自家產品。其構想是協助這些夥伴加速產品上市,並降低產品開發費用。自2004年推出以來,IBM已在北美和歐洲成立大約40座這種中心。
中國對抗殭屍網路與木馬法制策略研析 日本內閣府公布知的財產推進計畫2019日本內閣府知的財產戰略本部在2019年6月21日公布本年度知的財產推進計畫(下稱本計畫),以「脫平均」、「融合」、「共感」做為本計畫三大主軸: 脫平均:依不同個體特性培養頂尖人材,促進新領域之挑戰及創造。以經產省、文科省、總務省、法務省為主責部會,實施包括培養具出色創造能力之人材、提供新創之後備資源、強化盜版因應對策、EdTech(教育科技)之活用、蒐集「STEAM教育」事例等策略。 融合:透過融合不同特性之分散個體,達成加速創新之作用。以經產省、文科省、法務省、厚生省、農林水產省、公正取引委員會為主責部會,實施包括創建智財資產平台、建構有助於AI及資料創作的相關規範等策略。另外修正資料信託認定方案的相關指針、提出資料銀行相關典範案例亦為重點。 共感:以經產省、總務省、外務省、文科省為主責部會,創造價值實現之友善環境,實施包括強化Cool Japan政策、籌劃音樂著作權利資訊資料庫、規劃能對應跨境傳輸之外語Metadata,協助將日本音樂推向海外市場等策略。 綜上,不難發現日本已將「創造」做為本計畫發展之核心概念。從人材培育、創造資料價值及打造軟實力產值等,都顯示智慧財產除保護之外,更應提升並擴散其價值。回顧我國智財戰略綱領在2017年結束之後,並沒有相關計畫延續。然而智慧財產是一國軟實力之展現。透過潛移默化的浸潤,能達到比任何硬實力還大之功效。我國應該思考如何重啟智財戰略,拓展我國軟性底蘊。