歐洲藥物管理局「臨床試驗資料公開與近用政策」(草案)之定案日期將延後

  歐洲藥物管理局(European Medicine Agency,EMA)於今年六月下旬起至九月底止,開放接受公眾針對該局所擬「臨床試驗資料公開與近用政策」草案(draft policy on publication and access to clinical-trial data)提出回饋意見。所有公眾建言都將由EMA加以檢視,並將成為上述政策草案正式定案前之參考。原本EMA預計在2013年年底即對上述政策草案拍版定案,然而,由於歐洲藥物管理局收到超過一千則來自四面八方、不同立場之公眾回饋意見,為求妥適、深入檢視、分析這些意見,EMA原訂之定案時程將被迫遞延。新的定案時間表最慢將於十二月中上旬公布。

  根據上述「臨床試驗資料公開與近用政策」草案之現行版本(亦即提供公眾評論並回饋意見之版本),原則上,EMA所持有之臨床試驗資料,將依其類型之差異而適用不同的公開或近用標準。依照EMA之分類,試驗資料將被區分為(1)「公開後不會導致個資保護疑慮之試驗資料」、(2)「如經公開,可能產生個資保護疑慮之試驗資料」、(3)「內含商業機密資訊之試驗資料」等三大類。上述第三類之「內含商業機密資訊之試驗資料」不會受到此一政策草案之影響,第二類資料將有限制的公開與提供近用,至於第一類資料,則將公開於EMA網站上供公眾下載。

相關連結
相關附件
※ 歐洲藥物管理局「臨床試驗資料公開與近用政策」(草案)之定案日期將延後, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6383&no=55&tp=1 (最後瀏覽日:2025/12/13)
引註此篇文章
你可能還會想看
中國大陸首例遊戲玩家集體請求網路遊戲公司回復遊戲中的團隊

  中國大陸首例因在網絡遊戲中花重金組建的團隊遭遇離奇解散,導致來自多個省市的遊戲玩家聯手於河南省對網絡遊戲運營商提起訴訟。     代表玩家提出訴訟的原告在《魔域》中投入許多時間與金錢,建立「情誼無痕」軍團,最高時軍團人數達2000餘人。由於軍團的升級和日常維護開支需要眾玩家共同出力出錢,「情誼無痕」被無故被解散所影響的玩家人數眾多。     被告網龍公司主張遊戲帳號註冊時所輸入的身份證並非原告本人、服務器電腦記錄顯示有人登錄「落花有意」帳號並將「情誼無痕」軍團解散,由此可推斷該帳號曾有兩人以上使用,故不能排除該帳號曾借與朋友使用或被他人盜號使用而將軍團解散。     每法官與原被告雙方進行調解,因雙方意見分歧,最終未達成調解協議。玩家表示如果網龍公司不能給予合理的答覆,他們將聯合分佈在全國各地的其他玩家陸續不斷地起訴網龍公司。

歐盟消費契約管轄權規定介紹

日立全球儲存科技公司對大陸微型硬碟製造商提起專利侵權訴訟

  硬碟製造商日立全球儲存科技公司(Hitachi Global Storage Technologies)聲明該公司已於2004年12月28日於北加州地方法院對中國大陸硬碟製造商南方匯通微型硬碟科技股份有限公司(GS Magicstor of China)及其位於加州Milpitas之聯合研究機構GS Magic and Riospring of Milpitas, CA提起專利侵權訴訟,主張南方匯通侵害日立對於生產硬碟所擁有的多項專利權,並希望獲得財產上損害賠償並永久禁止GS Magic繼續於美國製造、利用、進口、販售該侵權產品,求償額度目前尚未公佈。   日立所生產的一吋硬碟已被裝配於Apple的iPod Mini MP3隨身聽,該公司更計畫於今年開發更小的微型硬碟。

IBM提出「人工智慧日常倫理」手冊作為研發人員指引

  隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability)   由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment)   人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability)   人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。   該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。

TOP