美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
美國公布實施零信任架構相關資安實務指引美國公布實施零信任架構相關資安實務指引 資訊工業策進會科技法律研究所 2022年09月10日 美國國家標準技術研究院(National Institute of Standards and Technology, NIST)所管轄的國家網路安全卓越中心(National Cybersecurity Center of Excellence, NCCoE),於2022年8月前公布「NIST SP 1800-35實施零信任架構相關資安實務指引」(NIST Cybersecurity Practice Guide SP 1800-35, Implementing a Zero Trust Architecture)系列文件初稿共四份[1] ,並公開徵求意見。 壹、發布背景 此系列指引文件主要係回應美國白宮於2021年5月12日發布「改善國家資安行政命令」(Executive Oder on Improving the Nation’s Cybersecurity) [2]當中,要求聯邦政府採用現代化網路安全措施(Modernizing Federal Government Cybersecurity),邁向零信任架構(advance toward Zero Trust Architecture)的安全防護機制,以強化美國網路安全。 有鑑於5G網路、雲端服務、行動設備等科技快速發展,生活型態因疫情推動遠距工作、遠距醫療等趨勢,透過各類連線設備隨時隨地近用企業系統或資源進行遠端作業,皆使得傳統的網路安全邊界逐漸模糊,難以進行邊界防護,導致駭客可透過身分權限存取之監控缺失,對企業進行攻擊行動。為此NIST早於2020年8月已公布「SP 800-207零信任架構」(Zero Trust Architecture, ZTA)標準文件[3] ,協助企業基於風險評估建立和維護近用權限,如請求者的身分和角色、請求近用資源的設備狀況和憑證,以及所近用資源之敏感性等,避免企業資源被不當近用。 貳、內容摘要 考量企業於實施ZTA可能面臨相關挑戰,包含ZTA部署需要整合多種不同技術和確認技術差距以構建完整的ZTA架構;擔心ZTA可能會對環境運行或終端客戶體驗產生負面影響;整個組織對ZTA 缺乏共識,無法衡量組織的ZTA成熟度,難確定哪種ZTA方法最適合業務,並制定實施計畫等,NCCoE與合作者共同提出解決方案,以「NIST SP 800-207零信任架構」中的概念與原則,於2022年8月9日前發布實施零信任架構之實務指引系列文件初稿共四份,包含: 一、NIST SP 1800-35A:執行摘要(初稿)(NIST SP 1800-35A: Executive Summary (Preliminary Draft)) 主要針對資安技術長(chief information security and technology officers)等業務決策者所編寫,可使用該指引來瞭解企業於實施ZTA所可能遭遇挑戰與解決方案,實施ZTA所能帶來優點等。 二、NIST SP 1800-35B:方法、架構和安全特性(初稿)(NIST SP 1800-35B: Approach, Architecture, and Security Characteristics (Preliminary Draft)) 主要針對關注如何識別、理解、評估和降低風險的專案經理和中層管理決策者所編寫,闡述風險分析、安全/隱私控制對應業務流程方法(mappings)的設計理念與評估內容。 三、NIST SP 1800-35C:如何操作指引(初稿)(NIST SP 1800-35C: How-To Guides (Preliminary Draft)) 主要針對於現場部署安全工具的IT 專業人員所編寫,指導和說明特定資安產品的安裝、配置和整合,提供具體的技術實施細節,可全部或部分應用指引中所揭示的例示內容。 四、NIST SP 1800-35D:功能演示(初稿)(NIST SP 1800-35D: Functional Demonstrations (Preliminary Draft)) 此份指引主要在闡述商業應用技術如何被整合與使用以建構ZTA架構,展示使用案例情境的實施結果。 參、評估分析 美國自總統發布行政命令,要求聯邦機構以導入ZTA為主要目標,並發布系列指引文件,透過常見的實施零信任架構案例說明,消除零信任設計的複雜性,協助組織運用商用技術來建立和實施可互操作、基於開放標準的零信任架構,未來可預見數位身分將成為安全新核心。 此外,NIST於2022年5月發布資安白皮書-規劃零信任架構:聯邦管理員指引[4] ,描繪NIST風險管理框架(Risk Management Framework, RMF)逐步融合零信任架構的過程,幫助聯邦系統管理員和操作員在設計和實施零信任架構時使用RMF。 我國企業若有與美國地區業務往來者,或欲降低遠端應用的安全風險者,宜參考以上標準文件與實務指引,以建立、推動和落實零信任架構,降低攻擊者在環境中橫向移動和提升權限的能力,與保護組織重要資源。 [1] Implementing a Zero Trust Architecture, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, https://www.nccoe.nist.gov/projects/implementing-zero-trust-architecture (last visited Aug. 22, 2022). [2] Executive Order on Improving the Nation’s Cybersecurity, THE WHITE HOUSE, https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity (last visited Aug. 22, 2022). [3] SP 800-207- Zero Trust Architecture, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, https://csrc.nist.gov/publications/detail/sp/800-207/final (last visited Aug. 22, 2022). [4] NIST Releases Cybersecurity White Paper: Planning for a Zero Trust Architecture, NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, https://csrc.nist.gov/News/2022/planning-for-a-zero-trust-architecture-white-paper (last visited Aug. 22, 2022).
歐盟執委會以濫用獨占地位處罰斯洛伐克電信及其母公司德意志電信經過深入的調查後,歐盟執委會以違反歐洲聯盟運作條例(TFEU)第102條之禁止濫用獨占地位課處斯洛伐克電信(Slovak Telekom a.s.)及其母公司德意志電信(Deutsche Telekom AG)總計38,838,000歐元之罰金。 斯洛伐克電信以超過五年之濫用獨占地位之策略,阻擋其他來自斯洛伐克市場之競爭者提供寬頻服務,因而違反歐盟反托拉斯法。尤其,執委會認為其拒絕提供開放之用戶迴路(unbundled access to its local loops)予其競爭者,因而導致其他經營者之利潤擠壓。其母公司德意志電信對於其子公司之行為有責;因此,應連帶負擔斯洛伐克電信之罰款。此外,德意志電信於2003年已經因為在德國寬頻市場的利潤擠壓而被罰款,該公司亦被課處額外之罰款共31,070,000歐元,以確保嚇阻及制裁其反覆的濫用行為。 2005年8月,斯洛伐克電信公布在某些條件下,允許其他經營者使用其開放用戶迴路(ULL)。此外,斯洛伐克電信亦不正當地阻擋用戶迴路開放的必要網路資訊;單方面地減少規範中所要求其開放迴路之義務的範圍,以及,在每一個取得開放用戶迴路所需之步驟上,設定不公平的條款和條件(例如搭配、資格、和銀行擔保)。因而延後或阻止其他經營者進入斯洛伐克零售寬頻服務市場。 此外,當其他競爭者以斯洛伐克電信訂定之零售價格販賣寬頻服務予零售消費者時,將產生利潤擠壓而導致虧損;在此種情況下,其他經營者將無法進入斯洛伐克市場。
美國專利法上的「銷售阻卻」(On-Sale Bar)美國專利制度中的「銷售阻卻」(On-Sale Bar)係指:發明銷售超過一年以上便喪失新穎性,不授予專利。 「新穎性」為美國專利法上可專利性要件之一。35 USC §102(a)(1)說明新穎性先前技術的例外(Novelty; Prior Art):「專利申請應被核准,除非該發明已申請專利、曾在紙本文件敘述、公開使用(In public use)、販售(On sale)、或以其他方式公開(Or otherwise available to the public)。」35 USC §102(b)(1)則給予專利發明人和申請人1年新穎性優惠期(Grace Period)。將前後兩個條文合併來看--假設該發明銷售超過一年以上便不得再授予專利。 「銷售阻卻」的立法意旨在於:避免發明人或其權利受讓人先將發明商業化並獲利,待競爭者進入市場後才提出專利申請,藉此有效地延長專利保護的期間,進而產生獨占(Monopoly)。 1998年,美國最高法院於Pfaff v. Wells Electronics (1998)一案,揭示銷售阻卻的要件:(1)該產品必須是商業上販售的標的;(2)該發明必須已經準備好要進行專利申請。唯有這兩個要件成就,才開始計算「一年」。