本文為「經濟部產業技術司科技專案成果」
經過了一整年向各界諮詢與彙整各方意見後,美國國家衛生研究院(NIH)於今年8月底,公布其所資助之GWAS基因型與表現型數據資料庫(genotype-phenotype datasets)之分享近用方針。此方針希望在保障研究參與者的個人隱私前提下,協助科學研究社群取得相關基因數據資料。GWAS數據資料對科學有顯著的幫助,並具有龐大的潛在公共利益,然而,提供個人的基因型與表現型資料進行科學研究,涉及個人隱私與秘密之保護,故具有高度的敏感性而受到大眾關切。 因此,NIH在訂定這項方針時,為了搜集各方意見,首先於去年5月,宣布計畫更新GWAS的數據資料分享政策,後於去年8月公開徵詢大眾對方針之意見,次又依據所蒐集之各方意見,於去年12月針對此分享政策舉辦會議進行討論,根據這些討論所形成之共識,併同NIH內部討論之結果,最後形成此項分享政策。 方針中指出,如何在促進科學研究之目的,與保護相關參與人的權利間取得平衡,是相當重要的議題,故本方針分別對研究人員近用之程序、基因數據資料的處理與參與者權利之保護進行詳細規範。舉例來說,本方針要求欲近用資料庫的研究人員,提供其研究必須使用此資料庫的書面說明資料;另外也會對所有存放在資料庫的數據資料進行去個人化處理,使該項資訊無法再以技術判別,並使用隨機方法加密,以確保參與者的隱私與保密資料不遭外洩。根據NIH表示,此方針雖然僅是對GWAS數據資料庫的近用作規範,但未來亦有意將其作為近用其他類似資料庫的規範參考架構。
馬來西亞社會安全網-就業保險馬來西亞政府計劃於2018年推行就業保險計畫(Employment Insurance Scheme,EIS),為受雇人提供一個就業的社會安全網包括失業津貼和培訓支持,計畫內容: 適用範圍:典型受雇工作者。 基金管理機構: 社會安全機構(Social Security Organisation,SOCSO)。 保護內容:為被裁員工提供三個月至六個月的臨時財政援助。例如,在求職津貼下,失業人員可以獲得第一個月的假定月工資的80%,第二個月的50%,第三個月和第四個月的40%,第五個月和第六個月的30%。 保險費用:雇主必須負擔受僱人月薪之0.2%,僱員亦須繳納受僱人月薪之0.2%。繳費將根據員工的工資按固定比例計算。保費繳納之上限為收入4000令吉(Riggit Malaysia,RM)以上者,繳納的最高貢獻額為59.30令吉。 罰則:一萬元以下或兩年以下有期徒刑。 根據國際勞工組織(ILO)一項研究顯示,2011年越南失業人員中只有5%受到失業保險的保護,泰國則為25%。即使在非典型工作者較無問題出現的國家,失業人員的有效覆蓋率通常在40%到50%之間。主要原因在於,失業保險只包括典型工作者,然而亞洲較多數人為非典型工作者。 另一方面,2016年馬來西亞提高最低工資增加雇主負擔,使雇主感受到高額成本的壓力。推行就業保險計畫雇主所需承擔之成本又再次增加。這使得雇主不得不傾向選擇短期契約工作或外包工作。使得雇主減少雇用正式員工,本身待遇與福利居於弱勢的非典型工作者增加,反而使得計畫可以保護範圍縮小加深非典型工作者不平等問題。面對目前全球非典型工作者人數有快速膨脹趨勢,以及雇主捨棄高成本的雇用方式。如何立法保護或改善非典型工作者就業環境,將成為就業保險計畫另一個重要的核心議題。
2011年個人資料外洩事件與前年相比減少128件,總數為1551件-預測賠償金額比前年擴大1.5倍日本2011年個人資料外洩事件及事故的件數比前年減少為1551件,但洩漏的個人資料筆數卻超過前年一成以上,約有600萬筆個人資料外洩。從數字來看預估的賠償金額是超過1900億日幣。 日本網路資安協會(JNSA)與資訊安全大學研究所的原田研究室及廣松研究室共同針對報紙集網路媒體所報導的個人資料外洩相關事件及事故所進行的調查所做的結論。 新力集團旗下的海外公司雖然發生合計超過1億筆的大規模個人資料外洩的意外,但此一事故並無法明確判別是否屬於個人資料保護法的適用範圍,因此從今年的調查對象裡排除。 在2011年發生的資料外洩事件有1551件,比起前年的1679件減少128件,大約跟2009年所發生的個人資料外洩差不多水準。外洩的個人資料筆數總計約628萬4363筆,與前年相較約增加70萬筆。平均1件約洩漏4238筆個人資料。 將事故原因以件數為基礎來分析,可以發現「操作錯誤」佔全體的34.8%為第一位,其次是「管理過失」佔32%,再接下來是「遺失、忘記帶走」佔13.7%。但以筆數來看,值得注意的是「管理過失」佔37.7%最多,但「操作錯誤」就僅有佔2.3%的少數。 再以佔全體事件件數5%的「違法攜出」就佔了全體筆數的26.9%;在佔全體件數僅有1.2%的「違法存取」卻在筆數佔了20.9%,可以看到平均每一件的受害筆數有開始膨脹的傾向。 再者從發生外洩原因的儲存媒體來看,紙本佔了以件數計算的68.7%的大多數,以USB記憶體為首的外接式記憶體佔了10.1%;但以筆數計算的話,外接式記憶體佔了59.1%、網路佔了25.5%的不同的發生傾向。 從大規模意外來看,金融機關與保險業界是最值得注意,前10件裡佔了7件。從發生原因來看,「違法攜出」及「內部犯罪」所造成的事故10件中有4件,其次是「管理過失」。規模最大的是山陰合同銀行的受委託人將業務所需的165萬7131件個人資料攜出的事故。 依據2011年所發生的事件及事故的預估賠償額是1899億7379萬日幣。遠超過前年的1215億7600萬日幣。平均一起事件預估損害賠償金額有1億2810萬日幣,每人平均預估賠償金額是4萬8533日幣。
歐盟人工智慧辦公室發布「通用人工智慧實踐守則」草案,更進一步闡釋《人工智慧法》之監管規範.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 歐盟人工智慧辦公室(European AI Office)於2024 年 11 月 14 日發布「通用人工智慧實踐守則」(General-Purpose AI Code of Practice)草案,針對《人工智慧法》(Artificial Intelligence Act, AIA)當中有關通用人工智慧(General Purpose Artificial Intelligence, GPAI)之部分,更進一步闡釋相關規範。 本實踐守則草案主要分為4大部分,分別簡介如下: (1)緒論:描述本守則之4個基本目標,包含協助GPAI模型提供者履行義務、促進理解人工智慧價值鏈(value chain)、妥適保障智慧財產權、有效評估且緩解系統性風險(systemic risks)。 (2)GPAI模型提供者:有鑒於GPAI模型對於下游系統而言相當重要,此部分針對模型提供者訂定具體責任。不僅要求其提供訓練資料、模型架構、測試程序等說明文件,亦要求制定政策以規範模型用途防止濫用。另於智慧財產權方面,則要求GPAI模型提供者遵守「歐盟數位單一市場著作權指令」(Directive 2019/790/EC)之規定。 (3)系統性風險分類法(taxonomy):此部分定義GPAI模型之多種風險類別,諸如可能造成攻擊之資訊安全風險、影響民主之虛假資訊、特定族群之歧視、超出預期應用範圍之失控情形。 (4)高風險GPAI模型提供者:為防範系統性風險之危害,針對高風險GPAI模型提供者,本守則對其設立更高標準之義務。例如要求其於GPAI模型完整生命週期內持續評估風險並設計緩解措施。 本守則發布之次週,近千名利害關係人、歐盟成員國代表、國際觀察員即展開討論,透過參考此等回饋意見,預計將於2025年5月確定最終版本。