本文為「經濟部產業技術司科技專案成果」
運作技術成熟度(Technology Readiness Level)進行技術評估 資策會科技法律研究所 法律研究員 羅育如 104年10月22日 壹、前言 為提升我國科技競爭力,於1999年制定科學技術基本法(以下簡稱科技基本法),透過科技基本法的規定,使原本歸屬國有財產之研發成果,得以下放歸屬執行單位所有,使大學對研發成果能有更完善應用之權利。 科技基本法實施之後,各研究單位開始學習國外經驗,積極進行產學合作,將內部之研發成果技術移轉與外部產業。但是,科技基本法實行已15年的今日,各界逐漸發現,政府經費之投入與研發成果產出之經濟效益有相當大的差距。例如科技部102年專題研究計畫補助經費為215億新台幣,但僅創造3.5億新台幣之衍生成果技術移轉權利金[1]。政府經費投入與產出不符預期的議題,牽涉多元層面問題,但是從新設立政府計畫案之目標與KPI,可以發現政府新創設之補助計畫開始以協助技術商業化作為主要目的,例如萌芽計畫、產學計畫等。 技術商業化操作模式會依據技術成熟度不同而有所差異,技術成熟度高的項目,廠商承接後所需要投入的研發成果可能較低,直接協助廠商改善生產流程或是成為產品商品化的機率較高;反之,廠商則需要投入較多的技術研發費用,需要花費較多的人力與資源,技術才有機會商品化。 由此可知,在技術商業化計畫推廣時,技術項目的技術成熟度是一個重要的評估關鍵。本文針對技術成熟度的評估指標詳細說明,以提供執行技術商業化計畫時,評估技術項目之參考。以下會分別說明何謂技術成熟度以及技術成熟度如何運用,最後會有結論與建議。 貳、技術成熟度說明 技術成熟度或稱為技術準備度(Technology Readiness Level;簡稱TRL)是美國太空總署(NASA)使用多年的技術評估方法,後來為美國國防部所用,再廣為國際各政府機構、學研單位、企業機構使用。 TRL是一個系統化的量尺/衡量指標,可以讓不同型態的技術有一致性的衡量標準,描述技術從萌芽狀態到成功應用於某項產品的完整流程[2]。而TRL涵蓋的技術研發流程則包括四個部分:(1)概念發展:新技術或是新概念的基礎研究,涵蓋TRL1~3;(2)原型驗證:特定技術針對一項或是多項潛在應用的技術開發,涵蓋TRL4與5;(3)系統開發:在某一應用尚未成為一整套系統之前的技術開發以及技術驗證,然後進行系統開發,涵蓋TRL6;(4)系統上市並運作[3],涵蓋TRL7~9。以下分別說明TRL每個衡量尺度的定義[4]。 TRL 1 基礎科學研究成果轉譯為應用研究。 TRL 2 為某項特殊技術、某項材料的特性等,找出潛在創新應用;此階段仍然是猜測或推論,並無實驗證據支持。 TRL 3 在適當的應用情境或載具下,實驗分析以驗證該技術或材料相關物理、化學、生物等特性,並證明潛在創新應用的可行性(proof-of-concept)。 TRL 4 接續可行性研究之後,該技術元素應整合成具體元件,並以合適的驗證程序證明能達成原先設定的創新應用目標。 TRL 5 關鍵技術元件與其他支援元件整合為完整的系統/系系統/模組,在模擬或接近真實的場域驗證。需大幅提高技術元件驗證的可信度。 TRL 6 代表性的模型/雛形系統在真實的場域測試。展示可信度的主要階段。 TRL 7 實際系統的雛形品在真實的場域測試。驅使執行TRL7的目的已超越了技術研發,而是為了確認系統工程及研發管理的自信。 TRL 8 實際系統在真實的場域測試,結果符合設定之要求。代表所有技術皆已整合在此實際系統。 TRL 9 實際系統在真實場域達成目標。 參、技術成熟度應用 技術成熟度可以單純拿來衡量技術開發階段、可用來衡量技術開發風險、也可作為研發機構角色以及補助計畫定位的參考,以下說明。 一.技術成熟度用來衡量技術開發階段 這是技術成熟度最單純的應用方法,但因為每種技術領域都可其特殊的技術開發脈絡,所以可以根據NASA原有的技術成熟度,修改成貼近該技術領域需求的技術成熟度指標。目前有看過軟硬體TRL指標、綠能&能源TRL指標、ICT TRL指標、生醫(新藥、生物製劑、醫材)TRL指標等[5]。 二、技術成熟度用來管理技術研發風險 研究開發需投入大量的人力、物力,而研究成果的不確定性又很高,所以需要有良好的技術研發管理。技術成熟度對技術研發管理而言,是風險的概念,一般而言,TRL階段與技術風險是反向關係,也就是說TRL階段越高,技術風險越低[6]。 需要考慮的面向包括[7] ,(1)現在技術成熟度在哪一階段?以及我們投入研發後,希望達到的技術成熟度目標為何?(2)從現在的技術成熟度到專案需要的技術成熟度,要精進這項技術到底有多難?(3)這項特定技術如果開發成功,對於全面技術目標而言的重要性如何? 三、機構角色以及補助計畫定位 TRL指標可用來明確區分研發機構角色定位,例如工研院內部運用TRL指標做為技術判斷量化評估指標,並且工研院需將技術成熟度提升到TRL6或7,以克服技術面的問題,進行小型試量產,才能跨越死亡之谷讓業界接手商業化[8]。 TRL指標也可以用來區分補助計畫的標的範圍,例如美國國防部傾向投資TRL 4階段技術,美國國防部培養TRL4以及4以下的技術到TRL6階段,使得這些技術能更順利的進入技術市場,其原因在於TRL程度越低,成功商品化的不確定性以及風險就越高,而TRL4階段技術項目,是美國國防部可以承受的風險程度[9]。 肆、結論 TRL指標現在已被廣泛的運用在技術評估工作上,透過量化的指標,協助研發人員或是技術管理人員方便掌握每個技術開發案的現況,例如現在技術在TRL哪個階段,技術開發結束後,TRL預計會到達哪個階段。確定目標之後,就可以進一步評估這個計畫開發案的風險並評估組織需投入的資源。 TRL是一個簡易的技術評估指標,但如果要以此做出全面性的技術策略,似乎就還是有所不足,因此,可以再搭配其他技術評估變項,發展為全面性的技術風險管理評估指標,可能可以搭配技術開發困難度指標,用以評估TRL往上提升一級的困難度程度[10],也可以搭配技術需求價值指標[11],這項技術順利成功的話,對整個系統開發而言的價值高低,價值非常高的話,就值得花更多資源與人力去投資。 由此可知,應該可以積極運用TRL指標,用來評估政府技術補助計畫,協助大學技轉辦公室管理各研發團隊之技術開發進程,也可提供技術移轉潛在廠商清楚設定技術規格,減低技術供給方與技術需求方之間的認知差異,進而提升技術移轉成功率,也就可以拉近政府經費投入與研發成果產出的差距。 [1] 行政院國家科學委員會,行政院國家科學委員會102年年報,頁24、98(2013),http://www.most.gov.tw/yearbook/102/bookfile/ch/index.html#98/z,最後瀏覽日2015/07/21。 [2] John C. Mankins, NASA, Technology Readiness Levels: A White Paper (1995). [3] id. [4] US DEPARTMENT OF DEFENSE (DoD), Technology Readiness Assessment (TRA) Guidance (2011), http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf (last visited July 22, 2015). [5] Lewis Chen,<Technology Readiness Level>,工研院網站,http://www.sti.or.th/th/images/stories/files/(3)ITRI_TRL.pdf (最後瀏覽日:2015/07/22)。 [6] Ricardo Valerdi & Ron J. Kohl, An Approach to Technology Risk Management (2004), http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 22, 2015). [7] John C. Mankins, Technology Readiness and Risk Assessments: A New Approach, ACTA ASTRONAUTICA, 65, 1213, 1208-1215 (2009). [8] 邱家瑜、蔡誠中、陳禹傑、高皓禎、洪翊恩,<工研院董事長蔡清彥 以新創事業連結全球市場 開創屬於年輕人的大時代>,台灣玉山科技協會,http://www.mjtaiwan.org.tw/pages/?Ipg=1007&showPg=1325 (最後瀏覽日:2015/07/22)。 [9] Ricardo Valerdi & Ron J. Kohl, Massachusetts Institute of Technology, An Approach to Technology Risk Management, http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 21, 2015). [10] 同註7。 [11] 同註7。
世界經濟論壇發布「融合實境中的共同承諾:促進未來網路治理」白皮書世界經濟論壇(World Economic Forum, WEF)2024年11月19日發布「融合實境中的共同承諾:促進未來網路治理」(Shared Commitments in a Blended Reality: Advancing Governance in the Future Internet)白皮書,說明進入虛實整合的融合實境(Blended Reality, BR)時代,需取得社會共識並進行治理,透過倡導以人為本的網路治理框架並促進多方參與,以平衡技術創新與社會期待之間的差距,使網際網路持續進步。 融合實境是由延展實境(Extended Reality)、AI、物聯網(Internet of Things)、6G網路、區塊鏈等新興技術驅動而形成,融合數位與實體。現行網路治理因橫跨不同司法管轄區而有分散與破碎問題,且技術標準間之矛盾或規範落差阻礙全球協作,恐不利因應BR發展所帶來之挑戰。因此,WEF藉此白皮書提出下列8項核心承諾與目標,強調安全、包容及可持續性之發展,期望作為全球共同之治理承諾以應對挑戰: 1. 尊重人權:保障數位與實體空間中的基本人權,促進個人尊嚴、自主性及包容性。 2. 問責:明確各方責任,建立透明有效的問題解決機制。 3. 協作安全(collaborative safety):透過多方利害關係人協作加強對弱勢群體的保護並制定安全標準。 4. 資產所有權:應確保數位和實體資產的來源、真實性及相關權利保護。 5. 負責任的資料治理:透過教育與研究等方式,促進學術、政府、企業與社會間之知識共享,並建立隱私及安全機制,保障資料治理。 6. 教育與研究:支持普及科技教育和推動開放式研究,促進全球科技共享。 7. 無障礙(accessibility):改善基礎設施及多元工具的發展,以確保科技在社會各層面之平等使用與普及化。 8. 永續性:平衡經濟效益與社會及環境影響,建立長期永續發展模式。 .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}
德國聯邦參議院通過保護數位世界隱私之《電信與電子媒體資料與隱私保護法》德國聯邦參議院於2021年5月28日通過《電信與電子媒體資料與隱私保護法》(Gesetz zur Regelung des Datenschutzes und des Schutzes der Privatsphäre in der Telekommunikation und bei Telemedien, TTDSG),其目的係保護數位世界中的資料與隱私,平衡數位服務使用者利益與公司經濟利益,並解決因德國電信法(Telekommunikationsgesetz, TKG)、電信媒體法(Telemediengesetz, TMG)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)同時並行,使消費者、電信服務提供者以及監管機關不確定如何適用上開法律之情況。 TTDSG彙集TKG、TMG中資料與隱私保護相關之條文,包含電信保密(Fernmeldegeheimnis)(第3條至第8條)、交通位置資料(第9條至第13條)、來電通知與號碼顯示(第14條至第16條)、終端使用者名錄和相關資料提供(第17條至第18條),以及允許匿名化、可隨時停止使用服務和保護未成年之相關措施(第19條至第23條),並參考GDPR和電子隱私保護指令(ePrivacy-Richtlinie)新增數位遺產(digitaler Nachlass)、終端設備隱私保護、同意管理以及監管之規定。 TTDSG於第4條新增數位遺產規定,終端使用者繼承人或具有相似法律地位者,可以向供應商行使繼承人權利,不受電信保密相關規定限制;在終端設備隱私保護和同意管理之部分,TTDSG第24條規定原則上第三方僅能在終端使用者同意下,於使用者的終端設備中儲存與近用資料,且當事人可隨時撤銷同意。 最後在監管方面,則分為個人資料保護相關與電信媒體領域,前者依TTDSG第28條、第29條由德國聯邦資料保護與資訊自由委員會(Die Bundesbeauftragte für den Datenschutz und die Informationsfreiheit, BfDI)作為獨立的資料保護監管機構,後者則依TDSG第30條屬德國聯邦網路局(Bundesnetzagentur)的職權範圍。
日本發布利用AI時的安全威脅、風險調查報告書,呼籲企業留意利用AI服務時可能造成資料外洩之風險日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。 隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。 本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下: 1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。 2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。 日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)