新加坡修訂「建築物資通訊設施實施條例」

刊登期別
第25卷,第12期,2013年12月
 

※ 新加坡修訂「建築物資通訊設施實施條例」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6427&no=55&tp=1 (最後瀏覽日:2026/02/07)
引註此篇文章
你可能還會想看
歐盟第29條資料保護工作小組澄清有關網際行為廣告cookie的使用

  歐盟電子通訊隱私指令(Directive 2002/58/EC on Privacy and Electronic Communications, e-Privacy Directive)第五條(3)中對於cookie(即業者為辨別使用者身份而儲存在用戶端上的資料)設置的規範,將於2011年5月全面施行。惟對於cookie之使用,部分網路業者認為如果網路使用者沒有選擇不要裝置cookie (opt-out),那麼就等同於同意裝置,而不需另外取得使用者的同意。針對此點,歐盟第29條資料保護工作小組(Article 29 Data Protection Working Party)於2010年06月22日對於網際行為廣告作出一份意見(Opinion 2/2010 on online behavioural advertising)。   意見中澄清,網際行為廣告係一種透過cookie的使用,追蹤蒐集網路使用者上網行為的資料,其網路資訊將被使用於日後發放與使用者上網行為相對應的廣告之用。除非是屬於網路使用者明白要求使用cookie,或是使用網路服務所『必要』的cookie(例如,沒有cookie就無法顯示或進行至下一個頁面),則不必先行取得使用者的同意外;其他凡經由cookie所儲存的資料,均應被視為『個人資料』,使用上必需先行取得網路使用者的明示同意,以自行選擇(opt-in)的方式接受cookie的使用,後存於網路使用者的個人電腦中。業者不得以搜尋引擎的cookie設定主張視為網路使用者等同已經明示同意使用cookie進行被追蹤及蒐集資料。   該意見受到許多歐盟及國際之網際出版、廣告及商務業者的反彈,業者表示所蒐集的資料並非可辨認性或敏感性資料,此規範的執行將會嚴重衝擊到廣告產業的收益,建議採行自律規範或使用行為守則來取代上述規定。   由於這項規範尚未於歐盟中被執行,歐盟第29條資料保護工作小組對於技術上如何遵循該規範也並沒有提出具體的建議。

93年國人申請發明專利數量大幅成長28.39﹪ 創新研發成果明顯躍進

  93年專利申請統計資料顯示我國受理專利申請案總數、發明申請案數量、及國人發明申請案等指標,均呈現相當幅度成長,顯示我國過去幾年官方與民間投資創新研發成果有明顯成長。    93年專利、商標申請與核准統計出爐,全年專利新申請案件總數72,105件,較92年的65,742 件增加6,363件(9.68﹪),本國人申請案43,038件,外國人29,067件。其中屬技術強度較高的發明申請案件總數計41,930件,較前一年增加6,107件(17.05﹪);本國人發明申請案16,754件,較前一年大幅增加3,705件(28.39﹪),顯示我國產業研發技術成果有向上提昇的趨勢。93年專利發證數66,415件,比92年大幅增加24,333件(57.82﹪),此係因93年7月專利法修正實施,新型專利改採形式審查,縮短專利審查時程,及專利廢除異議制度改採繳費後公告同時發證的制度轉換短期影響。    93年商標申請案依類別統計為72,650件,比92年申請案件數65,907件,增加6,743件(10.23﹪),;93年商標公告註冊案計54,912件,較前一年74,572件減少19,660件(-26.36﹪);依類別計55,986件,均較前一年減少。不論是在申請或公告註冊數都是以本國人佔絕大多數。商標申請於92年底開始實施一申請案多類別制度,不同類別毋需另提出一獨立申請案,因此依類別統計數會比申請案件數多。

Google根據加州消費者隱私保護法,允許屏蔽個人化廣告

  Google近期宣布更新廣告政策,以遵守將於2020年1月1日生效之「加州消費者隱私保護法」(California Consumer Privacy Act, CCPA),要求符合該法規之事業體(不論是否於加州開設實體據點):年度總收入超過2,500萬美金、年度收入50%以上源自於出售加州居民之個人資料、每年收到或分享總計超過5萬筆加州居民、家庭或裝置之個人資料、若公司之母公司或子公司符合CCPA所定條件者,允許消費者得選擇並行使退出其個人資料銷售權利。   Google表示使用其網站廣告工具與應用程式將能屏蔽個人化廣告,個人化廣告,係依消費者瀏覽紀錄、興趣及過去行為投放予消費者,廣告商有時花費高達10倍價錢置入,惟互聯網相關企業先前所進行之遊說未能使該法規排除個人化廣告,從使最受歡迎及利潤豐厚之線上廣告面臨行銷危機。   依Google新合規條款,透過Google工具(如AdSense和Ad Manager)銷售廣告之網站及應用程式目前無需進行重大更改,廣告商亦可選擇停止所有來自加州網址之消費者或阻擋全球使用個人資料之個人化廣告銷售,該合規條款除於線上發布外,並已通知予各廣告商。   Google表示,當觸發「限制數據處理」時,廣告將僅基於一般數據,例如用戶所在城市位置或廣告所在頁面主題等;此外,Google亦不會在受限制模式下記錄個人資料而用於未來之廣告行銷。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP