荷蘭資料保護局:Google隱私權政策違反該國資料保護法

  荷蘭資料保護局(Data Protection Authority, DPA)歷經長達七個月的調查,於2013年11月28日發布新聞稿,聲明Google違反該國資料保護法,因其未適當告知用戶他們蒐集了什麼資料、對資料做了些什麼事。

  DPA主席Jacob Kohnstamm表示:「Google在未經你我同意的情形下,對我們的個人資料編織了一張無形的網,而這是違法的。」調查報告援引了Google執行長Eric Schmidt在2010年一場訪談中所說的話:「你不用鍵入任何字,我們知道你正在什麼地方、去過什麼地方,甚至或多或少知道你在想些什麼。」。

  調查顯示Google為了展示個人化的廣告及提供個人化的服務,而將不同服務取得的個人資料加以合併,如搜尋記錄、所在位置及觀看過的影片等。然而,從用戶的觀點來看,這些服務係基於全然不同的目的,而Google亦未事先提供用戶同意或拒絕的選項。依照荷蘭資料保護法的規定,Google合併個人資料前,應經當事人明示同意,而該同意無法藉由概括(隱私)服務條款取得。針對DPA的聲明,Google回應他們已經提供用戶詳細資訊,完全符合荷蘭法律。

  DPA表示將通知Google出席聽證會,就調查結果進行討論,並決定是否對Google採取強制措施。但是,從Google的回應看來,他們不太可能在聽證過後改變心意。以先前Google街景車透過Wi-fi無線網路蒐集資料的案例為鑑,Google(市值達3500億美元)若繼續拒絕遵循,將有可能面臨高達1佰萬歐元的罰鍰。

相關連結
※ 荷蘭資料保護局:Google隱私權政策違反該國資料保護法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6440&no=64&tp=1 (最後瀏覽日:2025/08/18)
引註此篇文章
你可能還會想看
美國政府管考辦公室提出醫療產業資訊化政策評價報告

  美國之政府管考辦公室( Government Accountability Office )針對聯邦政府推動醫療產業導入資訊應用之相關措施及作為,九月初向參議院政府再造委員會( Committee on Government Reform, House of Representatives )下轄之聯邦人事暨組織次委員會( the Subcommittee on Federal Workforce and Agency Organization )提出報告,綜合回顧 2004 以來之各項政策宣示及執行規劃,指出目前猶有未足之處以及今後適宜更加留意之方向。   簡言之,醫療產業導入資訊應用,可望帶來降低營運成本,提升經營效率,防免發生過誤,維護病患安全等諸多實益,已為各界所共認。另由於聯邦政府介入醫療產業之程度與影響層面既深且廣,不僅本諸規制角度主管產業,更推動諸多施政,投入大量資金,提供老人、傷殘、兒童、低收入戶、原住民、退伍軍人、退休公職人員等不同社會族群各式相關服務,從而責成聯邦政府領銜推動醫療產業導入資訊應用,藉此提升醫療之品質及效率,應屬妥適。   自 2004 年提出行動綱領以降,聯邦政府即已陸續接櫫各項目標及其實施策略,並區分病歷資料格式、傳輸互通標準、網路基礎架構、隱私安全議題、公衛服務整合等面向分別開展,獲致相當成效。惟據管考辦公室之分析,既有之政策措施及各項作為,似乏詳盡之細部規劃及具體之實踐要項可資遵循,亦無妥善之績效評比指標以利參考。由是觀之,迄今之努力及其成果固值稱許,然就 2014 年普遍採用電子病歷並且得以交流互通之願景而言,還有很多需要努力的地方。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

IBM提出「人工智慧日常倫理」手冊作為研發人員指引

  隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability)   由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment)   人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability)   人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。   該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。

EDPS發布「評估限制隱私權和個人資料保護基本權利措施之比例指引」

  歐盟資料保護監督機關(European Data Protection Supervisor, EDPS)於2019年12月19日發布「評估限制隱私權和個人資料保護基本權利措施之比例指引」(EDPS Guidelines on assessing the proportionality of measures that limit the fundamental rights to privacy and to the protection of personal data),旨在協助決策者更易於進行隱私友善(privacy-friendly)之決策,評估其所擬議之措施是否符合「歐盟基本權利憲章」(Charter of Fundamental Rights of the European Union)關於隱私權和個人資料之保護。   該指引分為三大部分,首先說明指引的目的與如何使用;第二部分為法律說明,依據歐盟基本權利憲章第8條所保護個人資料的基本權利,並非絕對之權利,得於符合憲章第52條(1)之規定下加以限制,因此涉及處理個人資料的任何擬議措施,應進行比例檢驗;指引的第三部份則具體說明決策者應如何評估擬議措施之必要性和比例性之兩階段檢驗: 必要性檢驗(necessity test) (1) 步驟1:初步對於擬議措施與目的為詳細的事實描述(detailed factual description)。 (2) 步驟2:確定擬議措施是否限制隱私保護或其他權利。 (3) 步驟3:定義擬議措施之目的(objective of the measure),評估其必要性。 (4) 步驟4:特定領域的必要性測試,尤其是該措施應有效(effective)且侵害最小(the least intrusive)。   若前述評估認為符合必要性,則接續比例性檢驗,透過以下4步驟評估:  比例性檢驗(proportionality test) (1) 步驟1:評估目的正當性(legitimacy),擬議措施是否滿足並達到該目的。 (2) 步驟2:擬議措施對隱私和資料保護基本權的範圍、程度與強度(scope, extent and intensity)之影響評估。 (3) 步驟3:繼續進行擬議措施之公平對等評估(fair balance evaluation)。 (4) 步驟4:分析有關擬議措施比例之結果。   科技時代的決策者在立法和政策擬定時,面臨的問題愈趨複雜,需要全面性評估,擬議措施限制應符合歐盟法規,且具必要性並合於比例,隱私保護更是關鍵,參酌該指引搭配EDPS於2017年發布之「必要性工具包」(Necessity Toolkit),將使決策者所做出的決策充分保護基本權利。

TOP