美國第二大連鎖商信用卡資料外洩

  美國第二大連鎖商塔吉特(Target)在12月19日正式發出郵件通知客戶,表示公司資訊系統因遭駭客入侵,從2013年11月27日至12月15日期間內的刷卡記錄可能遭竊,約莫共4千萬筆,遭竊內容包含姓名、卡號、卡片到期日和卡片驗證碼。目前美國的塔吉特連鎖店推出全面9折的優惠來挽回消費者的信心,並對資料外洩的個別民眾提供免費的信用監督作為補償。

  每當資安事件發生時,所有防毒軟體公司及資安管理服務都會跳出來大肆評論,並宣稱這是因為沒有購買自家資安服務或產品的關係,但在塔吉特事件,此番事後諸葛的批判方式顯然不再行得通。

  塔吉特的資訊系統先前接受過檢驗,完全符合「支付卡產業資料安全標準(PCI DSS)」,有專家評析不太可能是在銷售點管理(POS)設備上(指擁有收銀、進銷存作業功能的機器)植入惡意軟體,比較可能是從授權與結算的交換系統竊取資料。

  塔吉特的信用卡資料外洩事件,引發了一連串的訴訟案件及犯罪調查,目前加州提起了兩件團體訴訟、奧勒岡州一件,損害賠償額估計高於5百萬美元;另外,目前至少有四州的州檢察長(Attorney General)展開了聯合調查,直接要求塔吉特配合提出信用卡資料遭竊事件的相關資訊,民眾和調查機關最關注的在於塔吉特何時得知資料遭竊事件的發生、花了多久時間進行應變以及是否有盡到立即通知當事人的義務。同時間,從塔吉特流出去的數百萬筆信用卡和簽帳卡資料已經開始在黑市中販售每筆價格20至100美元不等。

相關連結
※ 美國第二大連鎖商信用卡資料外洩, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6483&no=55&tp=1 (最後瀏覽日:2025/12/13)
引註此篇文章
你可能還會想看
歐盟提出通用型人工智慧模型的著作權管理合規措施建議

歐盟提出通用型人工智慧模型的著作權管理合規措施建議 資訊工業策進會科技法律研究所 2025年07月23日 為推動以人為本且值得信賴之人工智慧(Artificial Intelligence, AI)應用,同時確保高度保護健康、安全及歐盟《基本權利憲章》所載之基本權利,包括民主、法治及環境保護,防止AI在歐盟境內造成有害影響,並依據歐盟《人工智慧法》(AI Act, AIA)第1條第1項支持創新。歐盟人工智慧辦公室(The European AI Office) 於2025年7月10日提出《人工智慧法案》關於通用型人工智慧的準則(The General-Purpose AI Code of Practice)[1],以下簡稱「GPAI實踐準則」。 該準則由辦公室擬定計劃邀集通用型人工智慧(以下簡稱GPAI)模型提供商、下游提供商、公協會、權利人、專家學者、民間團體組成工作小組,進行討論與草擬。目的在協助GPAI模型的提供者符合AIA要求其應訂定模型技術文件,提供給下游提供者,並應制定著作權政策、發布訓練內容摘要的規定。預計將自 2025 年 8 月 2 日起適用。 壹、事件摘要 歐盟GPAI實踐準則包括透明度、著作權與安全維護(Transparency, Copyright, and Safety and Security)三大章節。為證明符合AIA第53條及第55條所規定義的指導文件(guiding document),並確保GPAI提供者(providers)遵守其在《人工智慧法》下之義務,於該準則於著作權章節提供適用AIA第53條第1項(c)款規定[2]的措施建議。 該準則強調採取相關措施可以證明符合前揭定之義務,但符合歐盟著作權及相關權利法規,並不以遵守該準則為要件,而且也不會影響歐盟著作權及相關權利法規的適用與執行,其權利最終歸屬法院。而著作權人依法保留的權利,以及針對文字與資料探勘(Text and Data Mining, TDM)的例外或限制 (EU 2019/790號指令第4條第1項),仍應在合法條件下適用。 考量到一些GPAI提供者是新創企業,規模有別於一般企業,故該準則亦強調其所要求採取的是相稱措施(proportionate measures),應與提供者之規模相稱且合乎比例(commensurate and proportionate),並充分考量中小企業(SMEs),包括新創公司(startups)之利益。 貳、重點說明 該準則建議GPAI提供者,採取訂定著作權政策、合法重製、尊重權利保留、積極防止侵權、提供問責管道等五大著作權管理措施。 一、訂定、維持並實施著作權政策 為證明已符合AIA第53條第1項(c)款所負之義務,GPAI提供者針對其投放於歐盟市場之通用人工智慧模型,應制定政策以遵守歐盟著作權及相關權利法規。該準則建議提供者應將著作權章節所列措施納入於政策中,公開發布並維持最新狀態其著作權政策摘要,且在組織內部指派負責實施和監督。 二、獲取合法可存取之受著作權保護內容 GPAI提供者進行 EU 2019/790號指令第2條第2項之文字與資料探勘及訓練其通用人工智慧模型進行網際網路內容的重製並擷取時,例如使用網路爬蟲(web-crawlers)或授權他人使用網路爬蟲代其抓取(scrape)或以其他方式編譯資料,應防止或限制對作品及其他受保護標的物之未經授權行為,特別是應尊重訂閱模式(subscription models)或付費牆(paywalls)所施加之任何技術性拒絕或限制存取。而且在進行網路爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站。 三、識別並遵守權利人的權利保留 GPAI提供者文字與資料探勘及訓練其通用人工智慧模型,其網路爬蟲應識別並遵守EU 2019/790號指第4條第3項的機器可讀(machine-readable)權利保留[3],讀取並遵循機器人排除協議(Robot Exclusion Protocol, robots.txt)。 該協議包括任何經網際網路工程任務組(Internet Engineering Task Force,IETF)證明技術上可行且可由AI提供者和內容提供者(包括權利人)實施之版本,或經國際或歐洲標準化組織採納透過基於資產(asset-based)或基於位置(location-based)之詮釋資料(metadata)等其他方式的機器可讀協議。亦包括通常係透過在歐盟層級經由權利人、AI提供者及其他相關利害關係人參與討論所達成共識的識別方案。 GPAI提供者亦應透過公開該等資訊並提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠取得相關資訊,包括所用的網路爬蟲、所採識別並遵守權利保留之措施。 四、降低著作權侵權輸出之風險 為降低整合GPAI模型的下游人工智慧系統(downstream AI system),生成可能侵害著作權或相關權利的作品或其他標的物GPAI提供者應實施適當且合乎比例之技術保障措施,防止其模型生成以侵權方式重製受歐盟著作權及相關權利法規保護之訓練內容。;同時,在使用政策、條款與條件或其他類似文件中禁止模型用於著作權侵權目的。對於以自由及開源授權(free and open source licenses)發布之GPAI模型,應在隨附文件中請使用者注意禁止模型用於著作權侵權用途。無論是將模型整合至其自身的人工智慧系統,或係依據契約關係提供給他人。 五、提供聯繫受理管道 GPAI提供者應提供與受影響權利人進行連繫的管道與資訊,讓受影響之權利人及其代理人(包括集體管理組織(collective management organizations))以電子方式進行投訴。同時,勤勉、非任意地並在合理時間內處理投訴,除非投訴明顯無根據,或已對同一權利人提出之相同投訴作出回應。 參、事件評析 美國先前於2025年6月23日曾由加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出AI訓練行為可主張合理使用的簡易裁決(summary judgment)[4]。但法官仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定,並不支持盜版一本本來可以在書店購買的書籍對於創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。 這次歐盟的準則更明確指出,GPAI提供者進行文字與資料探勘及訓練其通用人工智慧模型,以網路爬蟲(web-crawlers)進行網際網路內容的擷取,應尊重訂閱模式(subscription models)或付費牆(paywalls)所採取的技術性拒絕或限制存取。而且在進行網路內容爬取時,應排除歐盟認定為持續且重複大規模商業侵犯著作權及相關權利之網站,即訓練資料的取得必須是合法。而且必須積極使用可識別並遵守機器人排除協議(Robot Exclusion Protocol, robots.txt)的技術,更應透過公開該等資訊、提供受影響權利人可在該等資訊更新時自動獲得通知的適當措施,使受影響之權利人能夠及時知悉所用網路爬蟲、所採尊重權利保留之措施。 雖然前揭美國法院案件正在進行審理,但顯然與歐盟的GPAI實踐準則及美國著作權局的合理使用立場[5]一樣,均不認同迴避權利保護施、自盜版網站取得的資料之情況。我國日前發生七法與法源公司之間的著作權訴訟,七法以網路爬蟲爬取法源公司於使用條款限制存取的資料,並非技術創新撞上不合時宜的舊有法律框架,而是創新應用仍應在合理保護權利的前提下進行。 歐盟GPAI實踐準則所揭示的政策制訂、尊重權利保留、積極防止侵權、提供有效且給予合理回應的問責管道等AIA合規要求,已提示GPAI的開發、服務提供,應如何透過公開、揭露措施來配套降低科技創新應用過程對既有權利的影響,也指引其應建立的內部管理與外部溝通重點。對於開發、運用GPAI對外提供服務的企業而言,在爭執訓練資料應有合法空間的同時,或許應該思考是否應先採取歐盟GPAI實踐準則所建議的措施,以尊重既有權利的態度,積極降低權利人的疑慮,始有助於形成互利的合法利用空間。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai。(最後閱覽日:2025/07/21) [2]該條款要求將通用人工智慧模型投放於歐盟市場(Union market)之提供者,必須制定政策以遵守歐盟著作權及相關權利法規,特別是透過最先進之技術,識別並遵守權利人依據《第2019/790號指令》(Directive (EU) 2019/790)第4條第3項所表達之權利保留。 [3]指不接受其著作被用於文字與資料探勘目的之利用。 [4]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [5]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

美國交通部發布國家道路安全戰略,建立五大核心目標期待實現道路零死亡願景

  美國交通部(U.S. Department of Transportation)於2022年1月27日發布「國家道路安全戰略」(National Roadway Safety Strategy, NRSS),向道路零死亡的長期目標邁出第一步。NRSS採取「安全系統方法」(Safe System approach)作為解決道路安全問題的指導性框架,其內容涵蓋行為干預(behavioral interventions)、道路應對措施(roadway countermeasures)、法律與政策之執行、車輛安全特性與性能,及緊急醫療照護等層面。不同於傳統安全方法,安全系統方法承認人為錯誤與人性脆弱的事實,基於道路死亡應可預防之原則,利用可提前準備的主動工具(Proactive Tools)預先識別並解決交通系統中的問題,並且建立一套能有效解決或降低風險的備援系統(redundant system),以確保某一環節發生故障時,其餘部份仍可正常運作。   NRSS將以五大核心目標為主軸,規劃全面性的安全措施,以實現道路零死亡願景。上述五大核心目標包括: (1)更安全的人們(safer people):鼓勵用路人採取安全、負責之行為,避免酒駕或毒駕等危險行為。 (2)更安全的道路(safer roads):設計可減少人為錯誤之道路環境,提高脆弱用路人安全移動之可能性。 (3)更安全的車輛(safer vehicles):透過改進既有技術與設備,並擴大對有效防止碰撞及使影響最小化的車輛技術與功能之使用,提高車輛安全性並降低碰撞頻率,例如:透過先進駕駛輔助系統(Advanced Driver. Assistance Systems, ADAS)預防或減輕碰撞的影響;或是利用偏離車道警示系統對車輛進行監控與紀錄,如檢測到車輛偏離車道,則立即向駕駛發出警報。此外應建立公共資訊資料庫,以便提供資訊幫助車輛安全行駛。 (4)更安全的速度(safer speeds):透過結合環境的道路設計、教育與推廣活動,以及活用自動測速器、依路段環境進行速限等方式,有效控制車輛行駛速度。 (5)事故後照護(post-crash care):透過完善緊急醫療照護提高事故存活率,並落實交通事故管理,避免事故再次發生。

IMDRF於2025年3月提出《醫療器材監管依賴計畫操作手冊》草案,促進國際監管的一致性與產品流通性

一、緣起與目標 「依賴制度(reliance)」指一國有效利用他國的審查結果,而減少重複作業、提升效率,並促進病人更快取得安全、有效產品的政策。為此,國際醫療器材法規管理論壇(International Medical Device Regulators Forum, IMDRF)於2025年3月提出《醫療器材監管依賴計畫操作手冊》(Playbook for Medical Device Regulatory Reliance Programs)草案,協助各國建立與管理依賴制度。惟此制度並非「無條件接受他國決策」或「國際換證」,而須由各國自行決定如何利用依賴制度,並承擔最終監管責任。 二、應用範圍 該手冊適用於所有醫療器材(含體外診斷器材)或輔具,並涵蓋產品生命週期各階段(如技術文件審查或品質管理系統驗證等)。 三、依賴機制的類型 手冊歸納三類依賴機制並舉例說明: 1.工作共享(Work-sharing):指多國協作進行監管任務,可為聯合評估、聯合檢查,或共同推出監管標準等。如IMDRF推出的「醫療器材單一稽查計畫」,訂定多國之驗證機構對製造商的統一稽核標準,使廠商受稽後所作成的稽查報告可一次性符合數國法規。 2.簡化審查(Abridged Review):以他國完整的審查成果作為基礎,僅針對當地「特有」及「新增」的風險進行審查。如新加坡健康科學局已實施簡審制度。 3.承認(Recognition):正式接受他國監管決策結果作為判斷依據,可分為單、雙、多邊的承認。如CE標誌的醫材可在歐盟27個成員國內通行。 四、結語 IMDRF並非藉由該手冊推行「最佳模式」,而是協助各國依需求發展適合的監管依賴策略,加強協作與資源共享,進而促進全球監管上的一致性與產品流通性。近年世界衛生組織及區域組織(如歐盟、東協、非洲聯盟發展署)越加重視各國監管法規的一致性,並將審查資源移向人工智慧或高風險醫材的監管探索中,此監管趨勢值得我國持續關注。

日本修訂大學與研究機關敏感技術出口管理指引,因應外為法相關行政命令修正擴大出口行為之認定範圍

  日本經濟產業省於2022年2月4日公告修正「大學與研究機關敏感技術出口管理指引」(安全保障貿易に係る機微技術管理ガイダンス(大学・研究機関用))。該指引係依據外匯與外貿法(外国為替及び外国貿易法,下稱外為法)及其行政命令訂定,用以協助大學與研究機關,建立符合出口管制法規之內控制度,防止關鍵技術外流。   經產省於2021年11月18日公告修正外為法第55條之10第1項授權訂定之行政命令「出口人法遵標準省令」(輸出者等遵守基準を定める省令の一部を改正する省令),強化「視同出口」(みなし輸出)行為管制之要件明確性。經上述行政命令修正,日本居民位於外國政府支配下,或其行動係經外國政府與組織指示,而受到外國政府與組織強烈影響之情形,視同非日本居民,向其提供敏感技術需申請出口許可。本次指引修正即以此為基礎配合調整相關內容,重點如下: 針對如何認定是否該當「視同出口」要件,追加說明模擬事例與判斷方式,例如:日本大學教授同時在外國大學兼職,又取得敏感技術時,是否該當「視同出口」要件,應以契約判斷或要求該教授應主動申報。 大學與研究機構之出口管理程序:就教職員與學生是否會在「視同出口」要件下,被認定為非日本居民,建議應由大學或機構內之相關部門於其到職或入學時,掌握必要資訊;技術提供方在提供技術前,需先確認技術取得方是否屬於「視同出口」要件下之非日本居民等。 增訂敏感技術出口人之義務:若需向直接取得敏感技術以外之人,獲取判定「視同出口」要件該當性之必要資訊,應訂定程序依此進行判定;大學或研究機構衍生新創事業若有涉及敏感技術出口之業務,大學或機構方應進行相關指導。 遠距工作與線上會議相關:應留意透過線上會議「提供技術」之可能性;存在僱傭關係但未入境日本,經遠距工作提供勞務者,視為非日本居民;於日本境內線上參加海外研討會時提供受管制技術,視同向境外出口技術而須申請許可。

TOP