韓國2012年度國家智財施行計畫檢討評估結果出爐
科技法律研究所
2014年03月26日
壹、事件背景
韓國國家智慧財產委員會(以下簡稱智財委員會)於2013年11月13日公布「2012年度國家智財施行計畫之檢討評估結果」。韓國智財委員會係依智慧財產基本法第10條,檢討、評估施行計畫之推動情形。檢討評估對象係針對2012年度國家智財施行計畫(以下簡稱施行計畫)之5大政策面向:創造、保護、運用、基礎環境、新智慧財產,挑選出重點推動共21個課題。另為確保評估之專業性及客觀性,由民間專家組成「政策評估團」,並召開會議就不同的推動課題討論,然後以等級決定優劣。
針對21個課題進行檢討評估之結果顯示,被評為優秀等級之課題有4個,分別為「透過改善研究發展體系,創造高品質智慧財產」、「加強智慧財產侵權物品國境管制措施」、「塑造尊重智慧財產文化」、「建構、運用新植物品種育種之基礎環境」;而需要改善之課題則有3個,即「支援海外當地侵權之因應」、「強化地方中小企業之智財能力」、「發掘及確保海洋生物資源與智財創造之支援」。以下就評估方法及結果扼要說明之。
貳、評估方法及結果概述
韓國考量到智財施行計畫之特殊性,且加上是首次推動、評估國家層級智財政策之成效,所以不僅是評估政策成果,同時也要對政策形成、執行等政策基礎環境之確保等相關要素進行評估,對此,韓國設定3項評估指標:「政策形成」、「政策執行」、「政策成果」,詳細指標內容如下表所示:
|
區分 |
評估項目 |
評估基準 |
|
政策形成(30%) |
1.計畫確立之適切性(15%) |
1-1.事前分析、意見蒐集之充實性(5%) |
|
1-2.成果指標及目標值之適當性(10%) |
||
|
2.政策基礎環境之確保水準(15%) |
2-1.推動體系之充實性(5%) |
|
|
2-2.資源分配之適當性(10%) |
||
|
政策執行(35%) |
3.推動過程之效率性(25%) |
3-1.推動日程之充實性(10%) |
|
3-2.相關機關與政策連結性(10%) |
||
|
3-3.監督及情況變化之對應性(5%) |
||
|
4.政策擴散之努力水準(10%) |
4-1.政策溝通、宣傳、教育之充實性(10%) |
|
|
政策成果(35%) |
5.政策成果及效果(35%) |
5-1.成果目標達成度(20%) |
|
5-2.政策效果(15%) |
為確保評估之專業性及客觀性,由韓國智財委員會之民間委員、及下設之創造、保護、運用、基礎環境、新智慧財產等專門委員會之專門委員,以及地方自治團體代表等30位成員組成政策評估團。每位評估委員就各機關提出之實績報告書內容為判斷依據,再依照不同指標之特性,進行定量和定性評估。政策評估團第1次評估完畢後,就會召開調整會議,決定各推動課題之評估等級(分成優秀、普通、需要改善3個等級)為何。
整體而言,韓國的智慧財產創造能力已提高不少,且韓國國內對智財保護水準亦逐漸提升,另外,對於智慧財產創造、保護、運用之正向循環體系所需之配套措施如新智慧財產相關法制,初步已整備完成。韓國之後擬要持續提高智財成果之品質,加強韓國在海外的智財保護,並且增進民間對智財運用政策之有感度,以及推動與新智財相關之各部會間對智財業務範圍調整與政策方面之合作推動。
美國自911事件後,事後檢討之建議之一為統合全美單一公共安全網路,可供跨部門之第一線救災人員使用。俟後美國於2008年拍賣700MHz頻段 (Auction 73)時,原本將Block D (788-793MHz/ 758-763MHz)共10MHz規劃為全國單一執照(Nationwide License),並與公共安全(public safety)頻段相連,得標者須與美國政府簽訂網路分享協議(Network Sharing Agreement, NSA),在必要時供緊急服務優先使用,惟該頻段歷經兩次拍賣均低於底價流標。2012年,商務部成立獨立機構First Responder Network Authority (下稱FirstNet),規劃如何統合所有與公共安全相關之通訊網路,FCC在2016年將前述流標之700MHz頻段撥交FirstNet使用。 FirstNet 2017年3月宣布與AT&T達成25年之合作協議,由AT&T協助該機構建置緊急服務人員專用之全國性LTE無線寬頻網路,該網路之主要用途為當緊急事故發生時,第一線之人員可利用該關鍵基礎設施進行通訊聯繫之用。FirstNet與AT&T的合作協議主要包括以下三個部分: FirstNet將提供上下行合計共20MHz 之頻譜 (788-798MHz / 758-768MHz),該頻段係美國主要之LTE頻段,商業價值極高,且設備之生態圈極為成熟。此外,FirstNet也將在未來5年提供65億美金的建設經費,該經費來源為FCC過去頻譜拍賣之標金收入。 AT&T承諾於25年內投入400億美金用於網路基礎設施的建設與維運,並確保網路的覆蓋率。 FirstNet同意在該網路未用於緊急服務時,得做為AT&T商業網路之一部分進行營運,但是當有緊急服務需求時,應立即提供緊急救難使用。 近年來,公共安全災防 (Public Protection and Disaster Relief)寬頻網路已成為許多先進國家的首要推動政策,包含英國與境內第一大電信商Everything Everywhere (EE)合作,芬蘭政府近來亦與電信商Telia共同合作測試LTE技術之公共安全網路。
加拿大聯邦上訴法院判決無實體酒店仍得就酒店服務註冊商標加拿大聯邦上訴法院於Miller Thomson LLP v. Hilton Worldwide Holding LLP案指出,儘管企業在加拿大未設立實體店面,但如在加拿大有提供與該實體店相關聯的服務,仍可就其服務使用該企業之商標。 該案背景為希爾頓集團(Hilton Worldwide Holding)在加拿大未有華爾道夫酒店(Waldorf Astoria)的實體店,卻將WALDORF ASTORIA(下稱系爭商標)於加拿大註冊用於「酒店服務」。對造Miller Thomson欲在加拿大註冊「WALDORF」、「THE WALDORF」、「WALDORF HOTEL」等類此名稱的商標,遭希爾頓集團反對。Miller Thomson為此主張商標註冊官應命希爾頓集團依商標法第45條規定,提出有在加拿大使用系爭商標的證明。希爾頓集團指出,系爭商標有使用於全球預訂、付款服務,且加拿大客戶為忠誠會員亦有獎勵積分等。然而,商標註冊官以先前Motel 6 Inc. v. No. 6 Motel Ltd. [1982] 1 FC 638 (FCTD) (“Motel 6”)判決,與加拿大商標異議委員會(Trademarks Opposition Board,TMOB)Stikeman Elliott LLP v. Millennium & Copthorne International Ltd., 2015 TMOB 231 (“M Hotel”) and Maillis v Mirage Resorts Inc, 2012 TMOB 220等案,認為須由實際位於加拿大的酒店,始能提供酒店服務,遂撤銷系爭商標的註冊。 經希爾頓集團提起訴訟後,聯邦上訴法院認為商標法未有「服務」的定義,因此有無使用商標,認定方式應符合現代的商業慣例。聯邦上訴法院指出,無論企業提供的是主要服務、附帶服務或輔助服務,只要消費者從中獲得實質利益,即代表企業已實現其服務。準此,華爾道夫酒店在加拿大雖僅有預訂、付款服務,屬於附帶或輔助服務,但若消費者有因系爭商標的原因,而願意在加拿大利用華爾道夫酒店提供的附帶或輔助服務,並從中獲得利益,則可認定系爭商標有在加拿大被使用。 該判決的重要性在於確立即便在加拿大無實體存在,商標權人仍可將商標與其服務結合,但聯邦上訴法院提醒,僅在加拿大境外在網站上顯示商標,尚不足證明該商標有使用於所註冊的服務。此外,商標若結合於網路服務使用,則商標人與加拿大消費者間須有足夠程度的互動,因此,商標權人為了持續受商標法的保護,有必要詳細記錄業經註冊商標的使用情況,俾利在發生爭議時,有證據資料得以佐證。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國政府部門共同推動多項鼓勵住宅節能優惠措施美國能源部於去年 (2012) 12月21日宣布將投入九百萬美元挹注數項住屋節能科技。除此之外,美國國會亦於今年元旦通過美國納稅人緩稅法案 (American Taxpayer Relief Act of 2012),而其中第四章能源稅延展的第408款將2005年能源政策法案 (Energy Policy Act of 2005) 第1332條所創設的能源效率新屋抵免 (Credit for Energy-efficient New Homes),展期到2013年年底。 據美國能源部長朱隸文 (Steven Chu) 表示,該國家庭平均每戶每年花費近兩千美元於能源相關開銷,而其中有大部分皆因諸如住屋的屋頂、閣樓或牆壁間的空氣洩漏而流失浪費。相關研究並顯示,百分之四十二的能源都喪失於建築外殼(building envelope),包括門、屋頂、閣樓、牆、地板和地基之中。該部於是決定投資建築圍護科技 (building envelope technology)的改進,包涵有高效能的窗戶、屋頂及冷暖器設備。 另方面,國會所通過的美國納稅人緩稅法案展延了包括能源效率新屋抵免(Credit for Energy-efficient New Homes)等十二項能源相關抵免或獎勵措施。其中第408條的展延將使美國國民得其於就其符合能源之星(Energy Start)認證標準之隔熱保溫工程、外部窗戶及門等2005年後所產生裝修支出 (含勞務承攬) 的百分之十,申報最高五百美元的賦稅減免。 2005 能源政策法法案所創設的能源效率新屋賦稅減免原定於2007年終止,之後由2006年的稅收抵免與醫療保健法案 (Tax Relief and Health Care Act of 2006) 延長至2008,再由08年的能源改進與延長法案 (The Energy Improvement and Extension Act of 2008) 展延至2009。其後,10年的減稅、失業保險再授權及工作機會增進法 (The Tax Relief, Unemployment Insurance Reauthorization, and Job Creation Act of 2010) 將其延伸至2011年年底,而目前通過美國納稅人緩稅法案再將其延至2013年12月31日。