韓國2012年度國家智財施行計畫檢討評估結果出爐
科技法律研究所
2014年03月26日
壹、事件背景
韓國國家智慧財產委員會(以下簡稱智財委員會)於2013年11月13日公布「2012年度國家智財施行計畫之檢討評估結果」。韓國智財委員會係依智慧財產基本法第10條,檢討、評估施行計畫之推動情形。檢討評估對象係針對2012年度國家智財施行計畫(以下簡稱施行計畫)之5大政策面向:創造、保護、運用、基礎環境、新智慧財產,挑選出重點推動共21個課題。另為確保評估之專業性及客觀性,由民間專家組成「政策評估團」,並召開會議就不同的推動課題討論,然後以等級決定優劣。
針對21個課題進行檢討評估之結果顯示,被評為優秀等級之課題有4個,分別為「透過改善研究發展體系,創造高品質智慧財產」、「加強智慧財產侵權物品國境管制措施」、「塑造尊重智慧財產文化」、「建構、運用新植物品種育種之基礎環境」;而需要改善之課題則有3個,即「支援海外當地侵權之因應」、「強化地方中小企業之智財能力」、「發掘及確保海洋生物資源與智財創造之支援」。以下就評估方法及結果扼要說明之。
貳、評估方法及結果概述
韓國考量到智財施行計畫之特殊性,且加上是首次推動、評估國家層級智財政策之成效,所以不僅是評估政策成果,同時也要對政策形成、執行等政策基礎環境之確保等相關要素進行評估,對此,韓國設定3項評估指標:「政策形成」、「政策執行」、「政策成果」,詳細指標內容如下表所示:
|
區分 |
評估項目 |
評估基準 |
|
政策形成(30%) |
1.計畫確立之適切性(15%) |
1-1.事前分析、意見蒐集之充實性(5%) |
|
1-2.成果指標及目標值之適當性(10%) |
||
|
2.政策基礎環境之確保水準(15%) |
2-1.推動體系之充實性(5%) |
|
|
2-2.資源分配之適當性(10%) |
||
|
政策執行(35%) |
3.推動過程之效率性(25%) |
3-1.推動日程之充實性(10%) |
|
3-2.相關機關與政策連結性(10%) |
||
|
3-3.監督及情況變化之對應性(5%) |
||
|
4.政策擴散之努力水準(10%) |
4-1.政策溝通、宣傳、教育之充實性(10%) |
|
|
政策成果(35%) |
5.政策成果及效果(35%) |
5-1.成果目標達成度(20%) |
|
5-2.政策效果(15%) |
為確保評估之專業性及客觀性,由韓國智財委員會之民間委員、及下設之創造、保護、運用、基礎環境、新智慧財產等專門委員會之專門委員,以及地方自治團體代表等30位成員組成政策評估團。每位評估委員就各機關提出之實績報告書內容為判斷依據,再依照不同指標之特性,進行定量和定性評估。政策評估團第1次評估完畢後,就會召開調整會議,決定各推動課題之評估等級(分成優秀、普通、需要改善3個等級)為何。
整體而言,韓國的智慧財產創造能力已提高不少,且韓國國內對智財保護水準亦逐漸提升,另外,對於智慧財產創造、保護、運用之正向循環體系所需之配套措施如新智慧財產相關法制,初步已整備完成。韓國之後擬要持續提高智財成果之品質,加強韓國在海外的智財保護,並且增進民間對智財運用政策之有感度,以及推動與新智財相關之各部會間對智財業務範圍調整與政策方面之合作推動。
美國商品期貨交易委員會(Commodity Futures Trading Commission ,CFTC) 在2015年09月宣布將比特幣等加密貨幣歸類為美國商品交易法(Commodity Exchange Act ,CEA)中的大宗商品(commodity),與黃金、原油或小麥的歸類一樣,受到委員會的監管,範圍包含在衍生商品契約(derivatives contract)中使用比特幣,或在州際貿易中使用比特幣為詐欺或人為操作(manipulation),自此CFTC開始追查從事加密貨幣衍生商品交易行為,卻沒有註冊的公司。 2018年01月時CFTC起訴Coin Drop Markets公司和其執行長Patrick K. Mcdonnell利用經營加密貨幣期權投資顧問公司,向投資人行銷若接受其投資建議將可獲得200%以上的報酬,卻從未於收取顧客諮詢費後提供任何諮詢服務,並接著關閉公司網站與社群媒體,該公司亦未向CFTC申請註冊,違反美國商品交易法。 對此美國紐約東區聯邦地區法院(Eastern District of New York)的法官Jack Weinstein於2018年03月06日裁定,認定加密貨幣屬市場交易時能保有一致的品質與價值的貨品(goods),具有價值保存(store of value)、金融交易(monetary exchange)的特質,且價格跟大宗商品一樣隨著人們的需求而有起伏變動,符合商品交易法對「商品」包含有形與無形的貨品、服務、權力與利益等的廣泛定義。 由於加密貨幣屬於商品交易法的適用對象,CFTC可對涉及衍生商品市場與現貨市場(Spot Market)的詐欺或操縱行為進行監管。基於以上理由,法院同意CFTC對Coin Drop Markets公司和執行長Patrick K. Mcdonnell的預防性禁制令(preliminary injunction)請求,禁止其繼續參與大宗商品交易。
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)
挪威推動修法舒緩泛歐盟區域內國際漫遊費率問題挪威交通部(Ministry of Transportation)甫於本月推出電子通訊法(Electronic Communication Act)修法草案,其主要針對1-5、2-12、4-14條之規定進行修正,期望透過確認主管機關對費率和爭端處理程序等事項之管轄權和財務補貼,解決歐盟(European Union;EU)和歐洲經濟區(European Economic Area;EEA)內,長期爭議不決的國際漫遊費率問題。 強調區域整合的泛歐盟經濟體(含27個EU會員國和挪威、列支敦士登、冰島3個EEA會員國),雖在貨物、人口、服務、貨幣之自由流通等,各項單一市場上的努力上相當成功,但其電信漫遊之跨國界服務,卻經常受到各界批評,主要問題即源自於居高不下的跨國漫遊費率。因歐洲地理和人口分佈稠密度甚高,居民極容易使用跨國電信服務,但卻需負擔動輒數倍的國際漫遊費用問題。近年來歐盟有意對此尋求解決之道,而挪威此次修法即為初步重要嘗試之一。
何謂「日本A-STEP計畫」?日本A-STEP計畫係指研發成果最適展開支援事業計畫,由國立研究開發法人科學技術振興機構負責辦理,主要目的在於兼顧大學研究成果之學術價值及實用性,同時透過產學合作推展大學的研發成果,帶動創新產生。計畫針對產業技術瓶頸,為民間企業不易涉入的高風險研發領域,由科學技術振興機構中介民間企業與公私立大學、公私立技術學院、公立研究機構、國立研究開發法人、公益法人共同執行產學研種子研發計畫,再依據不同的目的、技術性質規劃不同類型的產學研合作研究計畫進行資助。 研究成果最適展開支援事業有兩個特色:單一申請窗口、以及採取接續模式分段申請。其流程為,大學研究人員向國立研究開發法人科學技術振興機構申請研究成果最適展開支援事業,在研究開發階段中,若被補助的種子計畫在結束後,想持續進行研究,可申請另一階段-委託開發實用挑戰之計畫補助,國立研究開發法人科學技術振興機構將透過外界研究人員對計畫進行審核,決定是否延長計畫以及延長的期程。一般研究開發可區分為三階段:可能性驗證、實用性驗證與實證驗證,故研究人員在申請A-STEP計畫時,研究計畫中需提及所申請計畫的現在發展情況與條件及想申請何種項目,以利國立研究開發法人科學技術振興機構決定後續的處理方式。