美國發表網路安全框架

  2014年2月12日,美國發表「網路安全框架(Cybersecurity Framework)」,該框架係由美國政府、企業及民間機構花費一年的時間共同發展而成,其蒐集了全球現有的標準、指引與最佳實務作法,最後由國家標準技術局(National Institute of Standard and Technology, NIST)彙整後所提出。

  本框架主要可分成三大部份:
1.框架核心(Framework Core)
框架核心包括辨識(Identify)、保護( Protect)、偵測( Detect)、應變( Respond)、與復原( Recover)等五項功能。這五項功能組成網路安全管理的生命週期,藉由這五項功能的要求項目與參考資訊的搭配運用,可使組織順利進行網路安全管理。
2. 框架實作等級(Framework Implementation Tiers)
共分成局部(Partial)、風險知悉(Risk Informed)、可重複實施(Repeatable)、合適(Adaptive)四個等級。組織可以透過對風險管理流程、整合風險管理計畫以及外部參與等三個面向的觀察,瞭解組織目前的安全防護等級。
3. 框架側寫(Framework Profile)
框架側寫係組織依照本框架實際操作後所產出的結果,可以協助組織依據其企業需求、風險容忍度,決定資源配置的優先順序,進一步調整其網路安全活動。

  此一安全框架旨在提供整體規劃藍圖予尚未建立網路安全架構的組織參考,而針對已有建立網路安全架構者,該框架並未意圖取代組織原先的風險管理程序和網路安全計畫,而係希望協助公、私部門改善資通訊科技和工業控制系統風險管理的能力。

相關連結
相關附件
※ 美國發表網路安全框架, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6513&no=64&tp=1 (最後瀏覽日:2025/12/03)
引註此篇文章
你可能還會想看
專利連結

  專利連結(patent linkage,亦有稱patent registration linkage)是1984年美國《藥品價格競爭及專利期回復法(Hatch-Waxman Act, HWA)》所創設。傳統上,醫藥主管機關與專利主管機關的權責是有所區分的。然而,醫藥主管機關因為醫藥管理制度與專利制度的連結,使得醫藥主管機關須審查專利相關事務,即醫藥主管機關在審查學名藥上市許可申請時,必須同時判斷該藥品是否侵害專利藥公司就該藥品所掌握的專利。   專利連結制度可以採取幾種形式,最簡單形式的專利連結可能涉及了以下的要求:當有學名藥廠對專利藥公司所生產的的專利藥品提出學名藥,並尋求醫藥主管機關批准時,則應向專利藥公司告知學名藥廠的身份。強度較強的專利連結,在該專利藥品的專利到期或者無效之前,可以禁止醫藥主管機關核發上市許可給學名藥品。而更強的專利連結不僅可以禁止核發上市許可,也可以禁止在專利期間內對學名藥品的審查。   我國目前並未採納專利連結制度,但在我國目前擬積極參與的《泛太平洋夥伴協議(TPP)》中則要求成員應採納專利連結制度,故未來我國動向將值得關注。

美國聯邦地方法院撤銷農業部對基因改造甜菜根之同意案

  今(2010)年8月中,美國聯邦地方法院法官Jeffrey S. White撤銷了美國農業部(United States Department of Agriculture,簡稱USDA)對基因改造甜菜根(genetically modified sugar beets)之同意案,並發出非永久性之禁制令(non-permanent injunction),從2011年開始禁止商業種植基因改造甜菜根。   事實上,早在去(2009)年由多個環保與消費者團體所提起的訴訟中,White法官即已認定美國農業部並未適切地評估商業化種植基因改造甜菜根所可能帶來的生態影響,特別是遠血緣繁殖(out-crossing)的風險,因此,該同意案實已違反國家環境政策法(National Environmental Policy Act,簡稱 NEPA)之規定,但當時法院並未具體指明補救之辦法;在今年8月上旬的聽證會結束後,White法官認為原告已充分闡明基因改造甜菜根可能對環境造成「無可修補之傷害」,在考量到可能造成之經濟影響後,聯邦地方法院特意裁定允許農民仍可按期收穫尚在成長中之基因改造甜菜根,直至2011年春季始完全禁止。然而,美國農業部則是初步回應,他們打算在明年准許基因改造甜菜根在受到控制的情況下有限度地栽種,持續地努力讓傳統、有機與生物科技生產系統得以共存。   由甜菜根所製取的(食用)糖,大約供應了美國國內50%的需求;其中,從2007年開始種植的基因改造甜菜根,其耕地面積在2010年時已達470,000公頃,佔全美甜菜根收成總數的95%之譜!本案深刻地點出基因改造生物體(Genetically Modified Organism,簡稱GMO)所涉及之安全風險與經濟效益的衡平問題,後續所引發的討論值得我們追蹤下去。

個人資料受害該向誰求償?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP