歐盟最高法院認為,2006歐盟資料保留指令(EU data retention directive)授權各會員國以法律要求電信業或網際網路服務供應商保留人民通信及網路活動數據資料長達兩年、並允許提供給執法或安全服務部門(police and security service)的規定,係屬重大侵害隱私生活及個人資料保護兩大基本人權,因此宣告該規定無效。該判決起因於澳洲及愛爾蘭民間團體向歐盟法院提出申訴,目前28名歐盟會員國正共同起草新的資料保護法案。
2006歐盟資料保留指令允許電信公司保留個人的ID、通信時間、通信地點及通信頻率。歐盟最高法院判決中表示,雖然肯定該規定對於偵查、追溯重大犯罪有其必要性及正當性,但對保留期間(6個月至2年)欠缺明確的保留標準,而過度侵犯個人隱私生活及未提供適當的個人資料保護措施,並不符合比例原則。
針對此一歐盟最高法院判決的宣示意涵,英國政府發言人表示通信數據的保留對執法部門偵查犯罪及確保國家安全是絕對必要的,若電信公司無法保留並提供給執法部門,很可能危及國安。
無論如何,歐盟最高法院的決定,重新宣告了人民隱私權及個人資料的保護不容國家任意侵犯,國家沒有權力任意的、不加區別的蒐集、保留一般人民的通信資料和網路行動,這是無視且扭曲基本人權的行為。該則判決為歐盟各成員國的資料保留法制開啟了新的里程碑。
莫德納公司(Moderna)於2022年8月26日對輝瑞(Pfizer)/BNT公司提出專利侵權訴訟,主張輝瑞之Comirnaty疫苗侵害其RNA平台技術,引發各界關注,因此舉不僅為兩大COVID-19疫苗藥廠之間之專利戰爭,同時可能引發莫德納違反其專利承諾(Patent Pledge)之疑慮,從而衍生專利承諾效力問題之爭議。 莫德納曾於2020年10月8日於該公司官網上自願承諾:「於大流行繼續的同時,莫德納不會針對那些旨在製造對抗大流行疫苗的公司,主張我們與COVID-19相關之專利」(第一次專利承諾),而後於2022年3月7日,莫德納更改其承諾(第二次專利承諾),永遠不會針對在Gavi COVAX預先市場承諾(Advance Market Commitment, AMC)中之92個中低收入國家、或為這些國家生產疫苗之公司主張莫德納之COVID-19疫苗專利,且前提是生產之疫苗僅用於AMC之92個國家。莫德納對於輝瑞侵權訴訟之聲明亦與更新後之承諾一致,其僅請求2022年3月8日後輝瑞COVID-19疫苗侵害莫德納專利之損害賠償,而未請求2022年3月7日前之損害賠償責任。 惟莫德納單方面更改其專利承諾並提起訴訟之行為仍引發眾多爭議,主要包括莫德納第一次專利承諾是否有法律上之拘束力、後續更改其專利承諾之行為是否有效、這些行為之影響為何等問題。就第一次專利承諾而言,目前有認為其具有法律上之拘束力,其可能可被視為一種「公共授權」(public license)行為,為專利權之書面授權且適用於任何希望接受授權者;退步言之,即使該授權未成立,莫德納基於「承諾禁反言」(promissory estoppel)之法理,亦不能隨意撤回該承諾或追溯撤銷其已授予之權利;且由於第一次承諾中所述之「大流行繼續(while the pandemic continues)」之條件在世界衛生組織未宣告疫情結束之前仍然存續,該承諾應仍繼續有效。惟亦有認為莫德納應得以第二次專利承諾可取代第一次專利承諾,而自2022年3月起主張其專利權者。 本案針對專利承諾之效力引發許多討論,未來於此訴訟案件中法院如何評價莫德納之專利承諾以及對於其效力之認定,亦可能影響現有之專利承諾生態:若企業可任意收回、更改其承諾,並於後續得以訴訟手段提告運用其專利之第三人,或有可能影響公眾對於專利承諾信任或利用意願;而若專利承諾不能任意修改,企業須受自身之承諾嚴格拘束,則未來或許即使社會遭遇危機,企業亦不敢貿然發布專利承諾應對危難。因此,此案後續發展將對整體專利承諾與授權影響重大,值得持續進行關注及了解。
何謂「阿西洛馬人工智慧原則」?所謂「阿西洛馬人工智慧原則」(Asilomar AI Principles),是指在2017年1月5日至8日,於美國加州阿西洛馬(Asilomar)市所舉行的「Beneficial AI」會議中,由與會的2000餘位業界人士,包括844名學者專家所共同簽署的人工智慧發展原則,以幫助人類運用人工智慧為人類服務時,能確保人類的利益。 該原則之內容共分為「研究議題」( Research Issues)、「倫理與價值觀」( Ethics and Values),及「更長期問題」( Longer-term Issues)等三大類。 其條文共有23條,內容包括人工智慧的研究目標是創造有益的智慧、保證研究經費有益地用於研究人工智慧、在人工智慧研究者和政策制定者間應有具建設性並健康的交流、人工智慧系統在其整個運轉周期內應為安全可靠、進階人工智慧系統的設計者及建造者在道德層面上是其使用、誤用以及動作的利害關係人,並應有責任及機會去影響其結果、人工智慧系統應被設計和操作為和人類尊嚴、權利、自由和文化多樣性的理想具一致性、由控制高度進階人工智慧系統所取得的權力應尊重及增進健康社會所需有的社會及公民秩序,而非顛覆之,以及超級智慧應僅能被發展於服務廣泛認同的倫理理想,以及全人類,而非單一國家或組織的利益等等。
加拿大競爭局發布人工智慧與競爭諮詢報告加拿大競爭局(Competition Bureau Canada,下稱競爭局)為更了解人工智慧如何影響或促進競爭,於2025年1月27日發布人工智慧與競爭諮詢報告(Consultation on Artificial Intelligence and Competition)。競爭局於意見徵詢期間獲得來自學術界、法律界、產業協會及大型科技公司的意見書。 諮詢報告彙整意見書內容並列出以下重點: 1. 人工智慧從資料輸入、基礎模型至終端產品或服務各階段皆在快速發展,可以為市場帶來新的競爭或阻礙競爭,人工智慧可能影響競爭原因包含資源依賴、資料控制及市場參進障礙等等。 2. 人工智慧領域中大規模投資是技術成長的重要關鍵,大型企業可藉由市場力量減少競爭或進行創新,少數大型企業因擁有較高的投資能力及數據資料專屬性,在基礎架構層(運行人工智慧所需的工具,如人工智慧晶片、雲端運算及超級電腦等)中佔有極高的市場份額,但也有部分意見認為人工智慧市場仍蓬勃發展中,亦有企業或學術機構未過度依賴專有數據但仍能開發出產品。 3. 人工智慧可能導致反競爭行為,企業雖可透過垂直整合來降低成本並提高效率,但可能會減少現行市場內部競爭,或透過具有人工智慧的演算法進行定價,達到操縱市場價格的行為,現行反壟斷法未來是否可以解決此一問題還有待觀察。 藉由諮詢的過程,競爭局更能掌握人工智慧發展、也了解公眾對話的重要性,意見書亦有助於該局未來提出兼顧人工智慧發展及促進市場競爭之政策措施。 我國公平交易委員會已於112年5月成立AI專案小組,負責掌握國際間人工智慧相關競爭議題的趨勢與發展,並針對現行人工智慧發展與競爭法執法研提政策配套措施,我國公平交易委員會與加拿大競爭局對於人工智慧與市場競爭議題之後續動態,值得持續追蹤。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。