為強化智慧聯網資通訊技術之整合,推動防救災之智慧化,美國國會眾議員Gus M. Bilirakis於2013年10月10日提出「整合公共示警和警告系統現代化法案」(Integrated Public Alert and Warning System Modernization Act of 2013, H.R. 3283),該法案修正「2002年國土安全法」(Homeland Security Act of 2002)第5章,加入了第526條款,進行國家公共示警和警告系統之現代化工作。
「整合公共示警和警告系統現代化法案」要求聯邦政府應積極進行相關可經驗證和測試研發技術之使用可行性,並強化公共示警和警告之傳遞與傳播,關於預期達成之目標則為: (1) 增強更高安全性、可靠性,並強化聯邦政府的警報和預警能力; (2) 快速預警傳播效率; (3) 改善通知遠程位置之能力; (4) 增強定位地理目標能力,以及 (5) 傳遞多種通信方式提供警報和預警的能力,其也規範聯邦政府應制訂調整政府之共同警報和預警協議、標準、名詞術語定義,以及公共警報和預警系統的操作流程。法案更採用多元化傳遞機制,來傳播國土安全資訊和其他警告資訊給公眾,從而觸及最多數人,聯邦政府更應加強研發及採用各種未來科學技術及整合應用。
其次,法案乃要求應設立「整合公共警報和預警系統諮詢委員會」,除了聯邦政府及地方政府官員代表須參加外,並應納入民間產業參與等意見諮詢,特別是明訂應結合: (1) 通信服務提供商; (2) 系統、設施、設備,並提供通訊服務能力之廠商、開發者和製造商; (3) 第三方服務者 (4) 傳播產業; (5)手機產業; (6) 寬頻產業; (7) 衛星產業等。並且,為了促進地方和整體區域合作,提倡公私夥伴合作關係,強化社區防範和因應,乃特別強調「商用行動通訊服務提供者」(Participating Commercial Mobile Service Provider)之參與和角色定位,依定義,乃指稱「被選定自願性參與負責公共警示情報傳遞之商用行動通訊服務提供者」。
截至2014年4月底,本法案已在眾議院委員會待審,相關立法趨勢與發展當持續關注之。
歐盟第2022/2555號《於歐盟實施高度共通程度之資安措施指令》(Directive (EU) 2022/2555 on measures for a high common level of cybersecurity across the Union, NIS 2 Directive)於2023年1月16日正式生效,其於《網路與資訊系統安全指令》(Directive on Security of Network and Information Systems, NIS Directive)之基礎上,對監管範圍、成員國協調合作,以及資安風險管理措施面向進行補充。 (1)監管範圍: NIS 2納入公共電子通訊網路或服務供應、特定關鍵產品(如藥品與醫療器材)製造、社交網路平台與資料中心相關數位服務、太空及公共行政等類型,並以企業規模進行區分,所有中大型企業皆須遵守NIS 2之規定,而個別具高度安全風險之小型企業是否需要遵守,則可由成員國自行規範。 (2)成員國協調合作: NIS 2簡化資安事件報告流程,對報告程序、內容與期程進行更精確的規定,以提升成員國間資訊共享的有效性;建立歐洲網路危機聯絡組織網路(European cyber crisis liaison organisation network, EU-CyCLONe),以支持對大規模資安事件與危機的協調管理;為弱點建立資料庫及揭露之基本框架;並引入更嚴格的監督措施與執法要求,以使成員國間之裁罰制度能具有一致性。 (3)資安風險管理措施: NIS 2具有更為詳盡且具體之資安風險管理措施,包含資安事件回報與危機管理、弱點處理與揭露、評估措施有效性的政策與程序、密碼的有效使用等,並要求各公司解決供應鏈中的資安風險。
日本《第6期科學技術基本計畫方向》建言日本《科學技術基本計畫》為依據其科學技術基本法之要求,以每5年為期擬定,目的在於建構一立基於長期性觀點且體系化的科學技術政策,並以之為施政框架,目前實施之科學技術基本計畫,為規劃自2016年至2020年期間施行之第5期科學技術基本計畫。而為形成下一階段之科學技術基本計畫,日本學術會議現公布了「第6期科學技術基本計畫方向」建言,為日本學術會議所屬之學者委員會學術體制分科會經審議後,就上述科學技術基本計畫之擬定發表意見,預計會於內閣府召開之綜合科學技術與創新會議(総合科学技術・イノベーション会議)中提出,作為訂定第6期科學技術基本計畫之重要參考。 本建言除了持續強調投資基礎科學研究的重要性,亦關注學術多元發展與提升整合性,強調優越學術基礎的建構、發展、以及用以解決問題之能力提升,繫諸各領域、地區、個人所關切議題與思考方式之不同所帶出的多元性,而為克服現代社會面臨的各種課題,應注重自然科學與人文社會科學之跨域合作以形成具統合性的知識基礎,同時須平衡投入各學門的研究預算,避免科學技術投資過分集中於特定的學術領域。具體的方向上,本建言主要提供了4個規劃面向:(1)強化對博士生就學的經濟上支援,並增加相關就業機會,如增加大學終身教職員額與高階技術人才職位等;(2)為進一步促成前述的學術多元發展,重新檢討並建構政府資助各類研究之制度藍圖,除了持續資助基礎研究及應用研究之外,強化對年輕學者的補助,亦期待能對需持續性進行之研究(如生命科學等需長時間蒐集並保存資料之領域)提供長期或無限期的支援;(3)追求科研參與者的多元化(如鼓勵女性、外國人、身障者的投入),以實現科學家社群之多元發展;(4)促成科學家社群以個人身分或透過組織參與科學技術政策形成,避免相關政策的擬定與施行未能切合研究實務之需求。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
英國Ofcom針對明年度BT Openreach線路批發價格提出諮詢文件英國通訊管理局Ofcom近日(2008/12/5)對於英國電信(British Telecommunications, BT)的網路部門Openreach,針對全迴路(fully unbundled line)、分享式迴路(Shared unbundled line)、住宅批發線路出租(Residential wholesale line rental)、商用批發線路出租(Business wholesale line rental)等等接取服務的批發價格提出諮詢文件。 Openreach是Ofcom基於管制需求要求BT所單獨成立的一個網路部門,主要業務為批發電信服務給通信供應商。自2006年成立後至今,原細分化出租之電路線路從123,000 條提升到超過五百萬條,透過批發接取服務的競爭,直接刺激零售電信服務市場的競爭,使消費者有更多的服務選擇以及更物有所值。 除了諮詢批發價格之外,Ofcom在該文件中提及對Openreach的批發服務設立價格上限。之前的批發價格並不包含因每年的通貨膨脹率所進行的調整或修改,在本次文件中則認為通貨膨脹確實會影響Openreach的成本,現在則應如實的反映這樣的調動。Ofcom認為,新的價格將可帶來持續性的寬頻及語音市場競爭,且可以確保Openreach有適當的誘因繼續投資新的建設。 Ofcom在諮詢文件中對於2009年10月後的年度批發價格:全迴路:85.00英鎊 ~ 91.00英鎊(目前是81.69英鎊);分享式迴路:15.60英鎊 ~ 16.20 (目前是15.60英鎊);商用批發線路出租:106.00 ~ 110.00英鎊(110英鎊);住宅批發線路出租:100.68英鎊 ~ 104.40英鎊(目前是100.68英鎊);而其他相關費用調整,依據其成本適時增加。 在諮詢各界意見後,Ofcom預計在2009年4月確定新的批發價格。