加州聯邦中區地方法院於2014年6月在Jancik v. Redbox Automated Retail, LLC (No. SACV 13-1387-DOC, 2014 WL 1920751 (C.D. Cal. May 14, 2014))一案中,判決影片自動出租機公司Redbox勝訴。法院認為,雖然Redbox在其經營的線上影視串流服務中未提供隱藏字幕(closed captioning),導致聽障者無法藉由閱讀影片字幕來了解劇情,但「網站」非美國身心障礙者法(Americans with Disabilities Act,下稱ADA)第三章「民間事業體所營運之公共設施與服務」中所稱「公共設施」(public accommodation),即無障礙建置範疇不包含提供公眾商品與服務的「網站」,因此業者不須提供具可及性之商品,例如:附字幕影片。法院認為第三章並未就公共設施中商品特色和內容有所規範,因此業者無義務改善其他影片存貨規格,使其能為身障者所觀看;又Redbox線上影視串流服務僅有網路通路,依ADA文義解釋,網站亦非屬於公共設施,無提供無障礙建置之必要。
本案與第一巡迴上訴法院在NAD v. Netflix案見解大相逕庭,該案以「美國國家聽障人士協會」(National Association of the Deaf, NAD)為首之公協會,集體對美國知名線上串流影視節目網站Netflix提起訴訟,控告其線上影視節目未提供隱藏字幕,使得聽障人士無法觀看該影片內容,法院判決該平臺網站屬於「公共設施」,依ADA第302條規範,身心障礙者有權利享受公共設施之設備,不得因殘障而受差別對待。有關網站是否屬於ADA第三章所稱公共設施,而使得私法人有改善網頁無障礙技術義務,仍有待觀察。
2021年7月30日,澳大利亞聯邦法院做出一項裁定,認為人工智慧(Artificial Intelligence, AI)可作為專利申請案的發明人。 隨著人工智慧的功能不斷演進,人工智慧已經開始展現出創新能力,能獨自進行技術上的改良,此判決中的人工智慧(Device for the Autonomous Bootstrapping of Unified Sentience, DABUS)係由人工智慧專家Stephen Thaler所創建,並由DABUS自主改良出食品容器與緊急手電筒兩項技術。 Thaler以其自身為專利所有人,DABUS為專利發明人之名義,向不同國家提出專利申請,但分別遭到歐盟、美國、英國以發明人須為自然人而駁回申請,僅於南非獲得專利,此案中澳大利專利局原亦是做出駁回決定,但澳大利亞聯邦法院Beach法官日前對此作出裁示,其認為1990年澳大利亞專利法中,並未將人工智慧排除於發明人之外,且專利並不如著作權般強調作者的精神活動,專利更重視創造的過程,其認為發明人只是個代名詞,其概念應具有靈活性且可隨著時間演變,故其認為依澳大利亞專利法,人工智慧亦可作為專利發明人。 該法院的裁定雖是發回澳大利亞專利局重新審核,且澳大利亞專利局仍可上訴,因此DABUS是否能順利成為專利發明人尚有變數,但此案對於人工智慧是否可為發明人已帶來新一波的討論,值得業界留意。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
英國衛生部將建立之病歷資料庫挑動隱私保護議題之神經英國衛生部(Department of Health)於5月21日公布新的國家衛生政策,政策中指出,未來將建立資料庫,透過建設完善醫藥資訊之流通分享機制可改善對於病患之醫療服務以及促進學術研究之發展,當局承諾將採取適當之保護措施以妥善保護當事人之個人資料。然而,該政策同時亦承認對於病患資料匿名化之措施仍可能侵害當事人之隱私權。 當局指出,為了保護當事人之權益,將個人資料匿名化實屬必要,然而,對於醫療院所而言,縱使已經將個人資料匿名化,但透過其他相關資訊包含年齡、性別、血型、身高或者體重等,仍可能間接識別出當事人之個人資料。 衛生部重申建立資料庫分享當事人之個人醫療資料將可有效促進學術研究之發展,但將會透過當事人同意以及確實匿名化之機制保護當事人之個人資料。另外,衛生部於該政策中指出未來將要求英國之醫療機構必須於內部建立系統,使患者、當事人可有管道查詢其留存於資料庫之資料。 英國之隱私保護專員指出,由於此政策涉及敏感性個人資料之蒐集,所以其針對衛生部之政策規畫將持續關注,以確保當事人之隱私權。
德國因應歐盟一般資料保護規則(GDPR)之通過,即將進行該國資料保護法(BDSG)修正德國聯邦資訊技術,電信和新媒體協會(bitkom)於2016年9月2日釋出將以歐盟新制定之一般資料保護規則(GDPR)內容為基礎,調整德國聯邦資料保護法(BDSG)之修法動向。 德國政府正在緊鑼密鼓地調整德國的資料保護立法,使之與歐盟GDPR趨於一致。已知未來將由“一般聯邦資料保護法”取代現行的聯邦法律。草案內容雖尚未定稿,但修正方向略有以下幾點: 首先,德國未來新法不僅參考GDPR、也試圖將該法與GDPR及歐盟2016年5月4日公告之歐盟資訊保護指令Directive(EU)2016/680相互連結。該指令係規範對主管機關就自然人為預防,調查,偵查等訴追刑事犯罪或執行刑事處罰目的,處理個人資料時的保護以及對資訊自由流通指令。 其次,新法將遵循GDPR的結構,並利用一些除外規定,如:在資料處理時企業應指派九人以上資料保護官(DPO)的義務。某些如通知當事人的義務規定,亦有可能在存有更高的利益前提下,限縮其履行範圍。此意味某些通知義務有可能得不適用,例如履行該義務需要過於龐大人力、資金支出、耗費過多等因素。 第三,聯邦法律將保留一些規定,如上傳給信用調查機構的條款、雇傭契約中雇用方面處理個人資料的條款,以及在公眾開放地區使用電子光學裝置監視的條款等。 最後,立法修正動向值得注意的重點尚有,(1)未來德國立法者將如何應對新的歐洲資料保護委員會(EDPB)中德國代表的地位(represe。由於EDPB將發布具有約束力的決定,針對爭議內容的決定意見,德國內部顯然應該統一意見。蓋因迄今為止的德國聯邦資料保護監察官(17個)經常提出不同的見解。此外,(2)還應該觀察聯邦資料保護監察官是否應該賦予權限,向法院提出對歐盟爭議決定或法律救濟,使案件進入德國法院,以爭執歐盟執委會所為之決定是否具備充足理由。前此,德國聯邦參議院(代表十六邦)2016年5月已要求聯邦政府引進新規定,使資訊監察保護官有請求法院救濟之權。這項源於安全港協議判決的討論,將來有可能提供德國資料保護監察官,挑戰隱私盾協議的可能性。但新法案是否會解決這一問題,這還有待觀察。 可預見在2017年9月下一屆德國聯邦議會選舉前,將通過法案。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。