歐盟倡議「邁向資料經濟時代」政策,規劃巨量資料Big Data發展策略

  2014年7月歐盟執委會針對巨量資料規劃新的政策,提出「邁向資料經濟時代」(Towards a thriving data-driven economy)政策,對研究發展帶來激勵,創造更多的商業機會。先前在2010年至2015年巨量資料科技與服務市場觀察報告中,指出預期巨量資料科技複合成長率為40%。從這些國際趨勢觀察,智慧聯網與巨量資料涉及的領域包括健康、食品安全、氣候與能源資源、智慧運輸系統以及智慧城市等,而這些都是當前歐洲無法忽略的問題。因此,此政策中指出應支持重點資料來促進公共服務與市民生活的競爭力與品質,廣泛分享使用並發展公開資料資料以及研究資料、確認相關的法律架構與政策屬有利發展、利用政府採購將資料科技帶入市場等項重點,以促成資料驅動經濟的全球化發展。

  歐盟指委會並指出,推動巨量資料政策的施行尚仰賴於其他的行動計畫以及各個會員國之間的合作 。而在資料蒐集與利用逐漸擴張的情形下,歐盟執委會更於2014年7月2日發出聲明,要求各國政府應重視巨量資料帶來的問題,並且指出在巨量資料的公共諮詢中,有主要四個問題: (1)缺乏跨境的合作(2)未具有充分設施以及資金資助機會(3)缺乏資料專家以及相關技術(4)法規範過於零散且複雜。因此,歐盟執委會提出以下幾點,有助於問題的解決:

1.    透過公私營合作制度資助巨量資料發展,特別是在個人醫療領域上的應用。
2.    在Horizon 2020架構下,設立巨量資料中心,將以資料為基礎,將之與雲端使用構成供給鏈,藉此幫助中小企業。
3.    當透過智慧聯網,及機器與機器間通訊取得資料時,應針對資料所有權以及責任規範建立新的準則。
4.    建構資料標準,找出潛在的缺漏。
5.    建立一系列超級運算中心,增加歐洲資料專家。
6.    在不同會員國建立資料處理設施之聯結網絡 。

  歐盟執委會希望能於上述各項政策推動下,共同建立有助資料經濟發展基礎架構及環境,並鼓勵產業界共同投入巨量資料的應用發展。

相關連結
※ 歐盟倡議「邁向資料經濟時代」政策,規劃巨量資料Big Data發展策略, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6623&no=64&tp=1 (最後瀏覽日:2024/11/22)
引註此篇文章
你可能還會想看
印度電力部公布「綠色氫能政策」,擬透過政策誘因建立綠氫產業鏈

  印度電力部(Ministry of Power)於2022年2月17日公布「綠色氫能政策」(Green Hydrogen Policy),宣告未來擬透過稅制、費用等誘因,建立綠色氫能產業鏈,以達到印度於COP26高峰會所承諾之減碳目標。   有鑑於綠色氫能是直接由再生能源電力所產生,故其相較於灰色氫能(註:由石化過程所產生之氫能)及藍色氫能(註:經碳封存之灰氫)而言,擁有更低之碳排放,有助於印度於COP26高峰會所承諾之減碳目標。然於技術或經濟層面而言,綠氫成本因為其產生、運輸、儲存過程要求相當高之費用以及成本,故遲遲無法普及,印度電力部為增進業者建立氫能產業鏈之經濟誘因,於2月17日公布前揭政策,以為因應。   印度電力部前揭政策,擬針對用地、電力市場等法規進行調適,相關法規調適重點如下: 定義綠色氫能為「直供」或「轉供」再生能源電力電解所得之氫能,也包含生物質能所生產之氫能。 於2025年6月30日前營運之綠色氫能生產業者,可免除25年之州際電力傳輸費用。 前揭綠色氫能生產業者,其所使用之電力可以是就地自再生能源發電設備取得(co-located),也可以是透過電力傳輸自其他再生能源發電設備所取得,不論該綠色氫能業者是否實際營運再生能源發電設備。 綠色氫能生產設備可被視為再生能源發電設備,被設置在相關用地上,並且,將開放綠色氫能設備設置於商港區域,以利綠氫出口。 因生產氫能所消耗或購買之再生能源電力,可計入RPS或RPO(Renewable Purchase Obligation)義務容量當中。 各州輸配電業,應允許綠色氫能生產業者加入電力交易市場。 承上,綠色氫能生產業者可進入餘電交易(banking)市場,並且餘電交易手續費應不超過「前一年度再生能源FIT價格」以及「當月日前交易市場之平均交易價格」間之差額。以避免氫能業者因經濟理由而被排除於餘電市場外。   但不論如何,對於印度而言,綠色氫能還只是發展初期階段,目前綠色氫能價格為每公斤3至6.5美元,而印度政府目標是於2030年將其降至1美元。對於大量仰賴能源進口之印度而言(85%石油及53%天然氣為進口),綠色氫能對於該國之能源自主有著相當重要的角色,因此印度政府將不餘遺力發展氫能。

歐盟執委會更新《軍民兩用貨品與優先技術出口相關限制》,加強對俄制裁

歐盟執委會於2023年7月6日更新《軍民兩用貨品與優先技術出口相關限制》(Export-related restrictions for dual-use goods and advanced technologies)一般性指引,本指引彙整制裁俄羅斯與白俄羅斯的常見問答,針對歐盟2014年第833號規則(Council Regulation (EU) No 833/2014)第2條、第2a條以及第2b條等規定進行說明,提供相關主管機關、利害關係人(包括出口商)參考。 本指引此次更新「高度優先戰場項目清單」(List of High Priority Battlefield Items)以供相關主管機關密切追蹤相關貨品是否有違法輸往俄羅斯的狀況,分別公布四組HS稅號以監控貨品的進出: (1)積體電路相關項目,分別為HS稅號854231、854232、854233以及854239。 (2)通訊及被動電子元件相關項目,分別為HS稅號851762、852691、853221、853224以及854800。 (3)半導體裝置等項目,分別為HS稅號847150、850440、851769、852589、853669、853690、854110、854121、854129、854130、854149、854151、854159、854160、880730、901310、901380、901420以及901480。 (4)自動資料處理機器元件等項目,分別為HS稅號847180、848610、848620、848640、853400、854320、903020、903032、903039以及903082。

美國司法部和專利商標局發表聯合聲明呼籲法官應謹慎核發禁售令

  美國司法部和專利商標局於今年(2013)1月9日發表聯合聲明,呼籲法官應謹慎對待「標準關鍵專利」(Standard Essential Patent)產品的禁售問題。   在該項聯合聲明發表前,美國聯邦貿易委員會 (Federal Trade Commission, FTC) 亦曾主張除少數特定情況外,侵犯標準關鍵專利的產品應處以賠償金,而非核發禁售令(Sales Bans)。該項聯合聲明要點歸納如下:   1.以公眾利益為最高優先考量,謹慎核發禁售令   聲明呼籲美國國際貿易委員會(United States International Trade Commission, ITC) 決定是否禁止使用關鍵專利的產品進口時,應以公眾利益為最高優先考量,此舉將增加持有「標準關鍵專利」的公司獲得禁售令之困難度,未來擁有「標準關鍵專利」的公司僅在極少數特殊的情況下獲得禁售令。   2.未具強制拘束力   聯合聲明僅代表司法部和專利商標局相關當局對專利問題的看法,雖可能影響法官心證,但聲明不具強制拘束力。   近來,美國各地方法院與ITC皆有未准核發禁售令之實際案例。例如:去年(2012)6月美國芝加哥法官Richard Posner駁回 Google 因部分標準關鍵專利有侵權疑慮申請禁售 iPhone;ITC在Apple Inc. 與Samsung Electronics 的專利訴訟中,認定Apple Inc. 未侵犯 Samsung Electronics的標準關鍵專利,並拒絕核發禁售令。

日本文化廳發布《人工智慧著作權檢核清單和指引》

日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。

TOP