日本正式打擊動畫與漫畫盜版 橫跨十五家企業聯手合作

  去年七月日本成立的「漫畫、動畫盜版對策協議會」上個月開始了所謂「MAG PROJECT」,針對中國、美國與歐洲等海外約100個提供盜版的網站,以約5個月的期間,透過電子郵件集中請求刪除盜版內容。

  主要打擊對象為提供影音分享的網站、提供漫畫線上閱讀的線上閱讀網站與累積大量盜版資料的儲存空間網站等,在不聽從刪除請求的場合,向當地法院提起訴訟等法律措施也在此次盜版對策的考慮之列。主要保護對象預計包括在日本海外也相當熱門的「one piece(海賊王)」、「名偵探柯南」等總計約580部作品。

  「漫畫、動畫盜版對策協議會」包括有東映動畫、吉卜力工作室、角川、講談社、小學館、集英社等等總計15家企業參加,由CODA(內容海外流通促進機構)負責事務局。

  提到盜版,以往主要是重製的漫畫書跟DVD,而現在的主流則是網路。盜版在日本海外網路開始流通的時候,約莫是寬頻開始普及的2006年前後。在盜版流通的背景,除大容量的傳輸變成可能之外,還包括有在美國等地出現的日本動畫熱潮,以及Youtube等動畫分享網站的出現等等因素存在。

  根據日本動畫協會的調查,2012年日本動畫製作公司的海外銷售金額為144億日圓,相較最近一期高峰值2005年的銷售金額313億日圓,可謂攔腰折半。另據日本經濟產業省25年度的調查,動畫與漫畫盜版造成的損害,光就美國一地來說,推估高達約有兩兆日圓之多。

相關連結
※ 日本正式打擊動畫與漫畫盜版 橫跨十五家企業聯手合作, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6628&no=55&tp=1 (最後瀏覽日:2026/02/03)
引註此篇文章
你可能還會想看
歐盟執委會提出醫藥品管理整體配套方案,保障歐盟境內大眾用藥安全

  為確保歐洲民眾於健康醫療方面之利益,歐洲製藥工業協會聯合會(European Federal Pharnaceutical Industrial Association;簡稱EFPIA)於2009年2月17日,向歐洲議會(European Parliament)提出建議,並敦促其應儘速通過歐盟執委會(European Commission)於去年年底所提出一項關於醫藥品安全、創新與易近用性之議案。而一位業界代表Günter Verheugen於當(17)日會面後指出:「此次會面,主要是希望能就新近執委會所提交之醫藥品管理整體配套方案(Pharmaceutical Package),進行初步意見之交換與討論」。   由於保障歐盟境內民眾之健康安全,實乃歐盟決策者(Decision-makers)所應掮負之重要責任,故EFPIA總幹事Brian Ager於此次會面交流之前,亦曾高聲向歐洲議會與各會員國家呼籲,應優先將病患安全(Patient Safety)議題納入考量,並採取果斷之行動;同時,其也指明,歐洲醫藥各界為尋求各種可能落實之方法,先前早已經歷過各個階段,並遲延了決策做成之時機;故,此次會面,除要為執委會提案之審查,奠定啟動之基外,亦盼能再次集聚並挹注歐洲醫藥各界之能量,於保護歐洲人民健康安全相關之行動當中。   關於歐盟執委會於去(2008)年底所提出之議案,由於其中有多項內容對歐洲醫藥各界之影響實廣且深;因此,該項提案目前業已廣泛地受到EFPIA與業者之重視。此外,就此項醫藥品管理整體配套方案中擬採行之具體立法規範措施,實包含如後3個面向:首先,是欲透過規範擬提昇藥物警戒(Pharmacovigilance)方法之現代化;其次,強化管制規範以減少假藥滲入歐洲整體醫藥品供應鏈之機會;最後,則是要要提供高品質之健康與醫藥品相關資訊給有需要之病患或大眾近用(Access)等。   由此可知,未來歐盟整體醫藥品管理立法方向,將分由3個不同之角度出發;並同時朝「改善歐洲大眾用藥安全」之目標前進;不過,在進一步進行條文化之前,前述由執委會所提出之醫藥品管理整體配套方案,將會先交由歐洲議會與歐盟理事會官員共同進行初步之討論。

新加坡個人資料保護委員會2017年7月發布資料共享指引

  新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於2017年7月27日發布資料共享指引(GUIDE TO DATA SHARING),該指引協助組織遵守新加坡2012年個人資料保護法(Personal Data Protection Act 2012, PDPA),並提供組織內部和組織之間的個資共享指引,例如得否共享個資,與如何應用,以確保符合PDPA共享個資之適當方法;並得將特定資料共享而豁免PDPA規範。該指引共分為三部分,並有附件A、B。   指引的第一部分為引言,關於資料共享區分為三種類型探討: 在同一組織內或關係組織間共享 與資料中介機構共享(依契約約定資料留存與保護義務) 與一個或多個組織共享(在不同私部門間、公私部門間)   共享包含向一或多組織為利用、揭露或後續蒐集個資;而在組織內共享個人已同意利用之個資,組織還應制定內部政策,防止濫用,並避免未經授權的處理、利用與揭露;還應考慮共享的預期目的,以及共享可能產生的潛在利益與風險。若組織在未經同意的情況下共享個資,必須確保根據PDPA的相關例外或豁免之規定。   指引的第二部分則在決定共享資料前應考慮的因素: 共享目的為何?是否適當? 共享的個資類型為何?是否與預期目的相關? 在該預期目的下,匿名資料是否足以代替個資? 共享是否需要得同意?是否有例外? 即使無須同意,是否需通知共享目的? 共享是否涉及個資跨境傳輸?   上述因素還能更細緻對應到附件A所列應思考問題,附件B則有相關作業流程範例。   指引的第三部分,具體說明如何共享個資,與資料共享應注意規範,並提供具體案例參考,值得作為組織遵守新加坡個人資料保護規範與資料共享之參考依據。

美國參議院通過《2021美國創新暨競爭法案》 眾議院通過《美國國家科學基金會未來法案》

  美國參議院於2021年6月8日通過《2021年美國創新暨競爭法案》(the United States Innovation and Competition Act of 2021, USICA),是一項重大支出的全面性法案,批准了2500億美元於未來五年投入科學研究,旨在提振美國科技研發核心能力,並藉此因應中國的挑戰。   該法案分為六大部分: 《晶片製造法與5G等無線技術應用》(CHIPS Act and ORAN 5G Emergency Appropriations) 《無盡邊疆法》(Endless Frontier Act) 《2021戰略競爭法》(Strategic Competition Act of 2021) 《國土安全與政府事務委員會相關條款》(Homeland Security and Government Affairs Committee Provisions) 《2021回應中國挑戰法》(Meeting the China Challenge Act of 2021) 其他(如:教育與醫學研究競爭力與安全、司法委員會)。   其內容包括提撥520億美元支援半導體產業、15億美元支援5G供應鏈生產與技術研發,同時防範關鍵技術外洩,並透過與國內外民間、外國政府合作推動半導體、人工智慧、通訊、能源與生物技術等領域的基礎研究與創新,提供多種獎勵措施。   同月28日眾議院則提出自己版本以取代USICA並加以通過,分別是《美國國家科學基金會未來法案》(National Science Foundation for the Future Act)以及《美國能源部未來科學法案》(Department of Energy Science for the Future Act),預計在未來五年撥款1280億美元,供美國國家科學基金會(NSF)與能源部(DOE)提升研發能力。   參眾兩院意見分歧而需再展開協商,預計於今年9至10月間於兩院協商委員會通過。

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

TOP