加拿大知名DJ Deadmau5去年(2013年)6月向美國專利商標局申請一個貌似迪士尼米奇老鼠樣子的logo為商標(一個大圓加上兩個小圓盤當作耳朵),此舉引發迪士尼的不滿,於本週二向美國專利商標局提出異議。
迪士尼認為Deadmau5所申請的logo跟其知名的米奇老鼠耳朵(Mickey ears)太過近似,若美國專利商標局核准註冊Deadmau5的logo將可能對其在美國及世界各地的事業有所損害,所以迪士尼正試圖阻止Deadmau5於美國取得註冊商標。
根據Deadmau5的律師陳述,Deadmau5一直以來都帶著老鼠頭形狀的頭套出現在各場合,時間已長達10年已上,且已於超過30個國家取得老鼠頭形狀的註冊商標,包含日本、得國、義大利及英國等。
而此位33歲的知名DJ Deadmau5則於社群網路上發文表示他已經決定好要奮力對戰迪士尼,迪士尼此種積極保護其米奇老鼠商標的行為已行之有年、眾所皆知。例如1989年時迪士尼成功透過法律行動的威脅,讓位於佛羅里達州的三家幼兒照顧中心清除了原本漆於牆上的米奇老鼠和其他迪士尼卡通人物角色。
此次商標註冊爭議,迪士尼究竟能否成功阻止Deadmau5註冊取得類似米老鼠耳朵樣式的logo,值得後續關注。
繼2023年1月5日美國總統拜登(Joe Biden)簽署《2022年保護美國智慧財產法》(Protecting American Intellectual Property Act of 2022)並生效後,至今尚未見任何根據該法規展開行動的報告,不過各界仍相當關注該法案的動向,因為其與過往的經濟制裁措施有著顯著的差異。 《2022年保護美國智慧財產法》與其他經濟制裁措施之差異包括: 1.僅針對營業秘密之重大竊盜,不包括其他智慧財產權如專利、著作權等; 2.未要求行為人主觀是為他國政府之利益而竊取營業秘密; 3.法規中使用到關鍵術語的標準及定義較少; 4.某些制裁措施具有強制性; 5.制裁的對象不僅包括竊取美國營業秘密者,也包括從他人竊取美國營業秘密中獲利者; 6.營業秘密盜竊行為須有合理可能性或已經對美國國家安全、外交、經濟、金融穩定構成重大威脅。 雖然《2022年保護美國智慧財產法》即將成為重要的政府工具,以解決營業秘密損失及其對國家安全之影響,且允許當事人面臨營業秘密訴訟或威脅時,將制裁措施武器化,但仍有部分問題有待解決,包括: 1.營業秘密受各州法律管轄,各州之管理機構是否會制定自己的營業秘密定義標準? 2.若在訴訟進行期間實施制裁措施,將產生甚麼影響? 3.是否產生《經濟間諜法》(Economic Espionage Act)之待審案件?美國司法部(US Department of Justice)是否必須參與? 4.判斷是否制裁的標準與美國司法部所採用的《經濟間諜法》之標準是否相同?若不同,則差異為何? 5.當事人或法院是否知道判定營業秘密盜竊行為時該適用什麼證據標準?(法規僅規定由總統決定) 6.法院能否將此類制裁措施作為其決策的一部分? 儘管《2022年保護美國智慧財產法》所衍生的問題及將產生的影響尚有待觀察,但建議企業採取下列合規措施,以避免成為美國新制裁措施的目標,包括: 1.制定並實施合規的營業秘密保護政策與程序; 2.對員工進行教育訓練,使其瞭解有關《2022年保護美國智慧財產法》的基礎知識以及對營業秘密之管理要求; 3.對有可能被盜竊營業秘密的流程進行稽核審查。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。
歐盟執委會通過關於《人工智慧責任指令》之立法提案歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。 《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。 歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。
英國上議院對於自動駕駛車運作環境及應備法制規範展開公眾諮詢英國上議院科學及科技委員會(The House of Lords, Science and Technology Committee)於2016年9月15日對於自動駕駛車(Autonomous Vehicles)的運作環境與應備法制規範展開公眾諮詢,委員會邀請利害相關的個人和團體提交書面文件來回應此公眾諮詢。書面意見提交的最後期限是2016年10月26日。 英國政府一向對發展自動駕駛車的潛力十分積極,其在2015年建立了一個新的聯合政策單位-聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV),並在2015年財政預算案中提供CCAV一億英鎊的智慧行動研發基金聚焦於無人駕駛車技術。CCAV還公佈現有與車輛交通相關立法的調查報告,其結論是:「英國現有的法律架構和管制框架並不構成自動駕駛車在公路上測試的阻礙。」此外,CCAV還出版了無人駕駛汽車測試的實務守則。在2016年英國女王的演講中,政府宣布將制訂現代運輸法案(Modern Transport Bill):「確保英國處在最新運輸科技的尖端,包括自動駕駛和電動車。」 2016年7月,CCAV舉辦了英國的聯網與自動駕駛車的測試生態系統的公眾諮詢,以及於2016年9月發佈個人和企業對於在英國使用自動駕駛車技術和先進輔助駕駛系統的公眾意見徵詢。 本次公眾諮詢將調查政府所採取的行動是否合適,是否有兼顧到經濟機會和潛在公共利益。在影響與效益方面,本次諮詢將收集自動駕駛車的市場規模與潛在用途、對用戶的益處與壞處、自動駕駛車對不同產業的潛在衝擊以及公眾對於自動駕駛車的態度等相關證據。在研究與開發的方面,自動駕駛車目前的示範計畫與規模是否足夠、政府是否有挹注足夠的研發資金、政府研發成果的績效以及目前研發環境是否對中小企業有利等面向,找尋傳統道路車輛是否有和自動駕駛車輛並存的過渡轉型方法。最後,布署自動駕駛車是否需要提升軟硬體基礎設施、政府是否有建立資料與網路安全的方法、是否需要進一步的修訂自動駕駛車相關法規、演算法及人工智慧是否有任何道德問題、教育體系是否能提供自動駕駛車相關技能、政府制訂策略的廣度;以及退出歐盟是否對英國研發自動駕駛車產業有不利之影響;而英國政府是否應在短期內做出保護該產業之相關措施,或是待Brexit條款協商完成之後再視情況決定等等。 上述議題在書面意見徵集完成之後,將於2016年11月召開公聽會再度徵集更廣泛的相關意見,科學及科技委員會希望能在2017年初做成調查報告並提交給國會,在得到政府回應之後,可能將進行辯論以決定未來英國自動駕駛車產業的發展方向。
日本發布新版之農業資料利用推動報告,並透過資料交換及利用機制確保資料共享及協作日本農林水產省於2025年9月在智慧農業網站上發布新版之農業資料利用推動(下稱報告),其內容包含2025年通過閣議決定之食材、農業、農村基本計畫,並指出為確保農業數位資料與人工智慧(下稱AI)之間的串聯應用,農業資料合作基礎平台(下稱WAGRI)的建立與資料協作、共有、提供功能是其不可或缺的要素。 報告指出,透過各式農業數位資料的蒐集與整合,諸如過往作物收成量資料、市場價格資料、土壤資料、農地資料、氣象資料等,並經過統合及分析後,可以達到提升作業效率及收益、減少勞動作業時間與器材損耗,以及降低環境負荷之效果。截至2025年9月為止,WAGRI網站上已提供高達223種農業數位資料相關的API,供農業領域從業者介接運用,並作為未來開發農業領域基礎AI模型的前置準備。 此外,報告亦指出WAGRI已於日本全國範圍內蒐集大量的農業數位資料,用以開發農業領域之基礎AI模型,並預計於2026年在WAGRI網站上提供基礎AI模型服務。未來農業領域從業者可透過WAGRI網站提供之基礎AI模型服務,輔以自身之農業數位資料,建立符合自身農業場域特性之特化型AI模型。 然而,報告亦指出不論是農業數位資料的API介接運用,還是將農業數位資料用以開發基礎AI模型,農業數位資料之法制配套仍需整備。因此,除了資料權屬等關係釐清外,報告特別提出於AI開發應用、資料共享之模式下,尚須建立「涵蓋資料整體生命週期之資料交換及利用機制」,包含資料對外公開之選擇權、資料提供之事前同意權、資料安全管理對策,以及資料刪除請求權等範圍,以確保農業數位資料在利用前的安心共享與協作。 我國政府如欲於農業領域發展基本AI模型,除應於全國範圍內蒐集大量之農業領域數位資料外,亦應建立串聯資料整體生命週期之資料交換及利用機制,以降低農業數位資料之間的協作風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)