知識發展研究中心於今年2014年第二次發布整體中國大陸智慧財產權的發展指標數,該單位往後將持續觀察深入研究並提供報告指標,以反應中國大陸於專利、商標、著作權等智慧財產權的發展狀況,以利引導國家智慧財產權戰略實施,進一步強化推動國家於智慧財產權事業與科技創新研發發展。
報告顯示,中國大陸知識產權局綜合發展指數在2013年有增加趨勢,不論在創造、運用、保護或環境等四項發展指數上,皆有穩定成長趨勢。報告中除地區特徵顯示出智慧財產權的發展與完備外,穩定的數據更突顯整體智慧財產權環境的完善。從世界排名第一的受理發明專利申請82.5萬件、受理通過PCT提交國際專利申請案2.2924萬件、連續12年居世界第一受理商標註冊申請共188.15萬件,以及首度突破百件著作權登記案等,顯示出中國大陸在智慧財產權的整體保護與落實推動。
另外,中國大陸知識產權局不斷在擴大智慧財產權的保護,由2012年至2013年共提升了1.79,侵害假冒偽劣案件上,執法移送與審判起訴案件皆有所成長,顯示出中國大陸對智慧財產權的保護重視與落實。尤其,在整體智慧財產權環境提升與優化上,指標顯示出由2012年至2013年明顯上升5.97,主要是專責服務機構、人員購置的逐年增加與穩定成長之因,亦使智慧財產權整體環境營造有優化、加速與強化的提升。
本文為「經濟部產業技術司科技專案成果」
「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
歐洲新著作權指令 將影響互聯網環境下之著作使用2018年9月12日,歐洲議會通過歐盟委員會於2016年制定的「單一數位市場著作權指令」,其中包含最具爭議的兩項條款: 第11條是有關「鏈接稅」(link tax)的條款。針對使用或匯集新聞文章片段的網站,未來恐需向源頭出版之新聞業者支付授權費用。例如若Twitter推文中包含來自Guardian文章的螢幕或文字摘要截取,則Guardian可以要求Twitter支付授權費用。 第13條則是有關「上傳過濾器」(upload filter)或稱「Memes禁令」(meme ban)的條款。為加重網路平台服務業者防止上傳者侵害著作權的監控責任,要求如Google和Facebook等業者,須使用強制內容過濾的軟體以清除違規行為,且須建立快速刪除機制,避免侵害著作權。 該指令在歐洲議會通過後,將進入歐盟委員會、歐盟理事會和歐洲議會之間的非正式談判。這三個組織將決定最終版本,約2018年12月提交給歐盟法律事務委員會,最後於2019年1月再回到歐洲議會進行投票。 歐盟指令本身雖不是法律,如何解釋立法也將取決於各國,惟透過本次歐洲議會的結果,可預見未來在歐洲市場,對於著作權人的保護與使用者的行為,將朝權利衡平的方向作調整。
美國聯邦交易委員會提出巨量資料報告,關注商業應用之潛在歧視性效果美國聯邦交易委員會(Federal Trade Commission, FTC)於2016年1月6日公布「巨量資料之商業應用」報告(Big Data: A Tool for Inclusion or Exclusion? Understanding the Issues),報告中歸納提出可供企業進一步思考之數項議題,期能藉此有助於企業確保巨量資料分析應用之正當合法性,並避免產生排除性或歧視性之對待,但同時亦能透過巨量資料之分析應用為消費者帶來最大的利益。FTC主委Edith Ramirez表示,巨量資料之重要性於商業之各領域均愈發凸顯,其對於消費者之潛在利益自是不言可喻,然企業仍應確保巨量資料之利用不會產生傷害消費者之結果。 「巨量資料之商業應用」報告經徵集公共意見與彙整相關研究後,聚焦於巨量資料生命週期的後端,亦即巨量資料被蒐集與分析之後的利用。報告中強調數種能幫助弱勢群體的巨量資料創新利用方式,例如依病患之生理特性量身訂作並提供醫療照護,或是新的消費者信用評等方式。報告同時也指出可能因為偏見或資料錯誤帶來的風險,像是信用卡發卡銀行降低某人信用額度的原因並非基於該持卡人之消費與還款記錄,而是與該持卡人被歸為「同一類型」之消費者所共同擁有之記錄與特徵。其次,報告對巨量資料於商業領域之利用可能涉及之法規進行了初步盤點,包括公平信用報告法(Fair Credit Reporting Act, FCRA)、與機會平等相關之聯邦立法—像是基因資訊平等法(Genetic Information Nondiscrimination Act, GINA)、以及聯邦交易委員會法,報告也列出7項預擬提問,協助企業因應巨量資料商業利用之法令遵循問題。
歐盟EDPB認為防範Cookie疲勞應確保資訊透明及簡化歐盟資料保護委員會(European Data Protection Board, EDPB)於2023年12月13日回覆歐盟執行委員會(European Commission, EC)有關Cookie協議原則草案(Cookie Draft Pledge Principles)之諮詢。該草案旨在處理「Cookie疲勞」(Cookie fatigue)所造成的隱私權保護不周全之處。 在電子通訊隱私指令(ePrivacy Directive)以及GDPR規範下,由於現行同意機制複雜,造成用戶對Cookie感到疲勞,進而放棄主張隱私偏好。 為了避免「Cookie疲勞」,EDPB提出以下原則和建議,大致可以分為三點: 一、簡化Cookie不必要的資訊 1.基本運作所需之Cookie(essential cookies)無需用戶同意,故不必呈現於同意選項,以減少用戶需閱讀和理解的資訊。 2.關於接受或拒絕Cookie追蹤的後果,應以簡潔、清楚、易於選擇的方式呈現。 3.一旦用戶拒絕Cookie追蹤,一年內不得再次要求同意。 二、確保資訊透明 1.若網站或應用程式的內容涉及廣告時,應在用戶首次訪問時進行說明。 2.不僅是同意追蹤的Cookie,用於選擇廣告模式的Cookie,仍需單獨同意。 三、維持有效同意 1.應同時顯示「接受」和「拒絕」按鈕,提供用戶拒絕Cookie追蹤的選項。 2.在提供Cookie追蹤選項時,除了接受全部的廣告追蹤或付費服務外,應提供用戶另一種較不侵犯隱私的廣告形式。 3.鼓勵應用程式提前記錄用戶的Cookie偏好,但強調在用戶表達同意時必須謹慎處理,預先勾選的「同意」不構成有效同意。 EC表示,該草案目的在於簡化用戶對Cookie和個人化廣告選擇的管理,雖然為了避免Cookie疲勞而簡化資訊,仍應確保用戶對於同意Cookie追蹤,是自願、具體、知情且明確的同意。將於後續參考EDPB之建議,並與利害關係人進行討論後,制定相關法規。