中華人民共和國發布「電子認證服務管理辦法」

     中華人民共和國於今年(2005)218頒布「電子認證服務管理辦法」,該辦法乃是繼20048月頒布「中華人民共和國電子簽名法」後,針對電子認證服務產業所為之規範,目的在於使主管機關(中華人民共和國資訊產業部)對於憑證機構與電子認證服務之實施得有一明確之監督管理辦法(4),將於今年(2005)41正式施行。該辦法對於憑證機構之核可、電子認證服務之提供、暫停與終止、憑證應記載事項、憑證機構之審查義務、主管機關之監督管理辦法,以及相關罰責均予以明定。並於該法第41條設有過渡條款,明定憑證機構必須於今年(2005)930日前取得電子認證服務許可,於今年(2005)101日起,未取得許可者不得繼續從事電子認證服務,是以不採自願認可制。

相關連結
※ 中華人民共和國發布「電子認證服務管理辦法」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=671&no=55&tp=1 (最後瀏覽日:2026/01/11)
引註此篇文章
你可能還會想看
優質網路社會基本法之推動芻議

日本首相頒布「2017智慧財產推動計畫」,揭示國家推動三大基礎政策面向

  日本首相安倍晉三於2017年5月16日在官邸舉行智慧財產戰略本部(知的財産戦略本部)會議,並正式頒布「2017智慧財產推動計畫(知的財産推進計画2017)」。為因應大數據(ビッグデータ)、人工智慧(人工知能)等相關先進科技議題,透過調整產官學資源,培育地方中小企業智慧財產基礎認知,保護高附加價值農產品品種,振興觀光及影視等文化產業,提昇國家綜合競爭力,構築第4次產業革命(society5.0)之基礎。該會議中,所發表「2017智慧財產推動計畫」之三大基礎政策面向分別為: 一、建構第4次產業革命之智慧財產系統 (一) 充分利用、活用資訊及人工智慧以強化產業競爭力: 制訂資訊利用契約指引(ガイドライン)。 修正不正競爭防止法(資料不當取得禁止等)。 著作權法之修正(對於權利柔軟性限制之規定)。 AI學習模型(AI学習済モデル)專利。 (二)智慧財產系統基礎之準備: 強化證據蒐集程序。 創設ADR制度(Alternative Dispute Resolution、日文:標準必須特許裁定)。 (三)推動引領全球之智慧財產制度及相關標準化: 推動全面化的智慧財產管理制度(賦予智慧財產權之資料及標準等)。 活用國立研究開發法人之標準及其人才之培育。 二、活用智慧財產之潛力,推動區域活絡與發展 (一)積極活用強化農林漁業、食品業等智慧財產: 充實地理標示(GI)或植物品種,於國內外之保護及輔導體系。 制訂國家農林漁業優勢的標準(JAS)。 推動活用資訊之智慧農業。 (二)活用地方中小企業智慧財產,並推廣產學及產業間之互助: 啟發中小企業智慧財產意識,支援智慧財產海外之推廣。 產學攜手之橋接,並支援事業化。 (三)每一位國民都是智慧財產人才,推動智財教育: 充實智慧財產教育之新指導要領。 智慧財產教育振興聯盟課程與教材之開發。 建立地方性聯盟。 三、2020年大放異彩之日本 (一)海外推廣和產業基地之加強: 「酷JAPON官民共同營造平台」、「地方版酷JAP」之基礎建設及相互合作。 人才之育成、教育機構的合作。 (二)振興電影產業: 強化中小企業公司製作之支援及資金調動多樣化,及其海外之發展。 成s立公私部門改善攝影環境之聯絡會議。 (三)構築資料庫:設立跨部門之窗口,在產官學共同協助下活用研究成果、及商業化。   這個推動計畫乃是與「總合科學技術革新會議(総合科学技術・イノベーション会議)」及「IT總合戰略總部(IT総合戦略本部)」等共同合作,並結合「資訊利用促進基本計畫(官民データ活用推進基本計画)」(以「科學技術基本計畫」、「科技創新綜合戰略(科学技術イノベーション総合戦略)」、「資訊利用促進基本法(2016第103號法律)」等為基礎所發展的新計畫),在智慧財產戰略總部的主導下進行推動,積極穩健的落實智慧財產價值之保護、智財潛力活用及地方革新推動、日本文化之集結及向世界傳達日本的新文化價值等三大目標,以達到國家的發展戰略中,智慧財產戰略政策之最大使命。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書

  世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。   包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。   在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。   綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。

TOP