基於專利動向分析之專利策略規劃

基於專利動向分析之專利策略規劃

科技法律研究所
法律研究員 徐維佑
2014年12月23日

壹、專利布局策略目的

  無論在企業針對新產品開發、或學研機構研究新興技術時,對於研究方向的判斷,皆應善加利用其他競爭公司、學研機構專利動向最新資訊。以各國專利資料庫為基礎,蒐集其他公司、機構的研究領域,或者與研發成果相關的專利等資料而成的專利地圖(patent map),可構築更完整的智財戰略。

  欲將研究成果商業化時,販售排他性產品對於競爭非常重要。因此阻止其他公司製造仿冒品、類似品,甚至競爭品,或者防禦其他公司之侵權告訴,皆必須盡早制定對策,亦即必須掌握該技術領域的智財資訊,才能讓研發活動順利推展。

貳、各國政府公開之專利動向分析

一、英國國家專利藍圖分析報告
  英國政府於2014年中,依續公告8大重要技術之專利藍圖分析報告[1],認為專利資訊可提供創新活動高價值之分析觀點,因此該國智慧財產局資訊團隊,透過專利申請資訊分析出全球性專利藍圖,幫助其國內企業與民眾瞭解此8大重要技術專利資訊,並將分析結果納入資金挹注之考量基礎。

  專利藍圖分析報告之資料,來源為2013年至2014年間全球專利資料庫中專利公開(Published)之資料,以及諮詢英國智財局各專業技術領域之專利審查員之結果。而專利藍圖分析報告之分析內容,包括專利涵蓋範圍、專利申請排名領先群、專利優先權期間、專利合作開發申請圖、專利技術分析等。

二、韓國R&D專利技術動向調查
  韓國R&D專利技術動向調查制度自2005年開始,每年度由與研究發展相關的各部會針對其提出之研發工作,提供研發計畫執行階段中,所研發之技術是否已有先前技術,或是與研發技術類似之專利發展情況等資訊,即以該研發領域之技術不被其它國家競爭對手搶先獲得專利權的目標作為研究人員之研究方向。

  而專利技術動向調查之研發課題則由韓國專利廳下韓國智慧財產策略院主管之「e專利國[2]」負責調查,提供專利分析結果的綜合報告,提供各部會與各領域別的專利動向、方向與及各種分析報告,內容包含有政府R&D專利技術動向調查報告、國家專利策略藍圖報告、以及專利分析與相關生產報告等。並根據以上報告提供技術領域別研發計畫方向、挑選出將來商業化運用價值較高之專利。

參、代結論

  專利動向分析的資訊為一種判斷的依據,儘管由分析報告所顯示的技術範圍中,判斷要進行哪一種研究時,需要的是研究者的經驗與知識,但專利動向分析有助於篩選出可行的研究範圍,尤其在投入國家資源補助科研計畫時,資源更應有效應用於可行的技術領域,而非早已佈滿專利地雷處。

  目前產業研發過程缺乏完善專利布局分析。實際生產產品之企業為避免侵權故意,常忽略申請前檢索工作;雖研究前或研究中調查之專利動向分析,並不能保證研究成果的可專利性,然而該工作對於國家、企業之研究發展實屬必要。透過如英國國家專利藍圖分析報告、韓國R&D專利技術動向調查,由國家公開技術領域共通性專利分析報告,對於企業後續進行技術專利布局,或者研究機構擬定研究發展方向,皆會有莫大的助益,並節省相當的時間與人力成本,值得我國參考。

[1] UK Intellectual Property Office, Eight great technologies: the patent landscapes (2014), https://www.gov.uk/government/publications/eight-great-technologies-the-patent-landscapes (last visited: 2014/10/01)

[2] 韓國e專利國網頁, http://www.patentmap.or.kr/patentmap/front/common.do?method=main(最後瀏覽日:2014/10/01)。

※ 基於專利動向分析之專利策略規劃, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6716&no=67&tp=1 (最後瀏覽日:2025/12/04)
引註此篇文章
你可能還會想看
澳洲規劃研修「國家重型車輛法」並探討科技設備檢測疲勞駕駛相關規範

  澳洲國家交通委員會(National Transport Commission)與警覺、安全、生產力合作研究中心(Cooperative Research Centre for Alertness, Safety and Productivity ,Alertness CRC)於2016年12月攜手研究重型車輛駕駛員之疲勞駕駛影響,並特別探討科技設備檢測及因應的可行性,並著手研析重型車輛疲勞駕駛管理相關規範之評估規劃。   依據澳洲國家重型車輛法(Heavy Vehicle National Law,HVNL)規定,設有國家重型車輛管理獨立機構(The National Heavy Vehicle Regulator,NHVR)針對總重4.5噸之重型車輛進行規範監管。依國家重型車輛疲勞管理規則【Heavy Vehicle (Fatigue Management) National Regulation】規定針對1.超過12噸總重額(Gross Vehicle Mass,GVM)之重型車輛2. 車輛及聯結物超過12噸者3.超過4.5噸可乘載12名成人(包含司機)之巴士4.超過12噸總重額定值之卡車及聯結車,其附接工具或機械者,必須進行疲勞管制,其他對於有軌電車、工具機械車輛(例如:推土機、拖拉機)、露營車等則不在此管制對象。該法針對重型車輛工作和休息時間、工作及休息時間之紀錄、疲勞管理豁免(Fatigue management exemptions),及公司、負責人、合夥人、經理等的連帶責任,訂有相關規範。疲勞管理規則的規範核心在於駕駛員不能在疲勞的情況下行駛重型車輛,故即使符合工作和休息限制,駕駛員也可能因疲勞而受影響。   目前,因有限的證據表明工作安排對於重型車輛駕駛員疲勞的影響程度,亦很少有研究使用客觀和預測技術測量駕駛員的警覺性和疲勞,另對於駕駛員睡眠的質量和時間最低要求的資訊亦不足。因此,現行法律規範對重型車輛駕駛員疲勞的影響將受到挑戰。故警覺、安全、生產力合作研究中心將採取更精準的警報檢測方法和睡眠監測設備,進行相關研究測試,以作為未來國家重型車輛疲勞管理規則修訂之依據。   駕駛疲勞所引發的交通事故時有耳聞,往往造成重大危害與耗費社會成本。目前實務上已有利用科技設備偵測是否有疲勞駕駛情形,然而更重要的是,應落實行車前的疲勞管制,及相對應的解決方案,並加強公司及相關管理者之監督義務及連帶責任,才能有效降低疲勞駕駛肇事率,確保道路安全。

美國簽署晶片和科技法案,全球科技業將掀起波瀾

  美國近日為防堵中國、其他受關注國家如俄羅斯等國掌握半導體等高科技行業關鍵技術,遂致力於加強培養其本土之半導體及高科技通訊產業。於美國時間2022年8月9日美國總統拜登簽署 「2022年晶片和科技法案」 (CHIPS and Science Act 2022),該法案除可作為2021年頒布之「美國電信法案」之補助資金來源,發展開放式無線電接取網路(Open Radio Access Network, ORAN)外,亦有望大幅度提升美國本土晶片生產量。   本法案提高美國聯邦政府對科學技術研究及開發專案之授權,除授權美國商務部(Department of Commerce , DOC)、國防部(Department of Defense, DOD)外,還結合國務院(Department of State, DOS)透過資金補助之方式,發展影響美國競爭力及國家安全至關重要之半導體製造等高科技產業、人工智慧、量子計算等科學研究,本法案整體編列之預算高達2800億美元,至2027年時,授權金額預計將達1740億美元,而其中將挹注超過520億美元之資金用於發展美國本土晶片之生產及研發。   此外,該法案設有靜態限制,禁止接受補助之半導體企業投資以電子設計自動化(Electronic design automation, EDA)工具設計或製造晶片之中國公司,換句話言,即受補助之企業不得於十年內投資或擴大生產中國製低於28奈米之先進晶片。本法案亦提供25%之稅收優惠予於美國建造、裝設晶片廠之業者,以鼓勵企業進駐美國藉以提升美國生產之晶片總量,同時藉由企業之投資帶動美國各地經濟發展,提高就業率。   藉由本法案之制定,有望降低美國對其他國家晶片之依賴,並得藉此發展科技研究,對未來全球高科技產業供應鏈將造成偌大影響,值得持續關注。

歐盟公布人工智慧法,建立全球首部AI全面監管框架

歐盟公布人工智慧法,建立全球首部AI全面監管框架 資訊工業策進會科技法律研究所 2024年07月12日 歐盟理事會於2024年5月22日正式批准《人工智慧法》(Artificial Intelligence Act,下稱AIA)[1],該法於2024年7月12日公告於歐盟的官方公報上,將自8月1日起生效,成為全球首部全面性監管AI的法律框架。 壹、事件摘要 人工智慧技術的應用廣泛,隨著使用情境增加,潛在的風險也逐一浮現。歐盟於2018年就提出「可信任的人工智慧」(Trustworthy AI)的概念[2],認為透過妥善的制度管理人工智慧的研發與使用,即使人工智慧具有多種風險,也可以使民眾享受人工智慧帶來的福祉。因此,歐盟執委會提出全球第一部全面監管人工智慧的法案,為人工智慧的設計、開發、部署、及使用建立適當的規範,希望法律的確定性能促進該技術的創新,並建立各界對於該技術的信心,擴大其採用,使該技術能造福人群。 自從歐盟執委會於2021年4月提出人工智慧法草案以來,其後續發展備受全球矚目,也吸引歐洲的人權組織、學術團體以及大型科技公司的關注。在多方利益關係者的遊說與介入下,該法案一度陷入僵局,其中生成式人工智慧(Generative AI)亦為爭議焦點。歐洲議會和理事會的AIA草案修正版本中,曾經納入生成式AI的定義與監管條款,然最後拍板定案以AI系統與基礎模型為監管對象,並未針對生成式AI。理事會、執委會和歐洲議會經過多次三方會談,終於在2023年12月8日就內容達成協議[3],草案在2024年3月13日交由歐洲議會大會表決,最終以壓倒性的票數通過該法。[4] 貳、重點說明 AIA全文分為13個章節,總計有113個條文以及13個附件。[5]AIA採分階段實施的方式,該法在生效三年後才可能完全實施。[6]本文擬就該法建立的AI監管框架,包括其適用範圍與規範、管理方式、治理組織、實施和配套措施等規定,擇重點說明如下。 (一)規範對象 AIA的規範對象分為兩類,其一為AI系統;另一為通用人工智慧模型(General Purpose Artificial Intelligence Model, GPAI,下稱通用AI模型)。 1. AI系統 為與國際接軌,歐盟修改AIA有關AI系統的定義,使其與「經濟合作暨發展組織」(Organisation for Economic Cooperation and Development,OECD)的定義一致,令該法更具國際共識基礎。AI系統被定義為「一種機器的系統,它以不同程度的自主性運作,在部署後可能展現適應性,並且對於明確或隱含的目標,從接收到的輸入推斷如何產生預測、內容、建議或可能影響實體或虛擬環境的決策等輸出。」[7] AIA設有豁免規定,涉及國安和軍事領域、科學研究和開發目的、純粹個人非專業活動使用的AI系統、以及大部分的免費及開源軟體並不適用AIA規範。免費及開源軟體只有屬於高風險或生成式AI系統、或涉及生物特徵和情緒識別目的,才須遵守AIA規範。[8] 2. 通用AI模型 執委會的草案原本不包含通用AI模型,在歐洲議會和理事會的建議下,AIA最後亦將通用AI模型納入監管。所謂通用AI模型,係指具有顯著通用性的AI模型,它可以勝任各種不同任務的執行,並且可以與下游的系統或應用程式整合。[9] 值得注意的是,AIA只約束已經在歐盟上市的通用AI模型,在上市前用於研究、開發和原型設計活動的通用AI模型並不包括在內。 (二)以風險為基礎的分級管理方式 AIA採取風險途徑監管AI系統和通用AI模型,視潛在風險和影響程度決定義務內容,對於兩者建立不同的分類規則,並針對AI系統整個生命週期進行規劃、建立AI系統和通用AI模型在各階段應符合的要求,由AI價值鏈的參與者分別承擔相應責任,其中以提供者(provider)和部署者(deployer)為主要的責任承擔者。[10] 1. AI系統的分級管理 根據風險程度對系統進行分類,以具有高風險的AI系統為主要規範對象,該類系統在投入市場或使用前必須通過合格評估,並遵守嚴格的上市後規範;而具有不可接受風險的AI系統則禁止使用。另外,AIA還訂有透明性義務,舉凡與人互動、具生成內容能力之AI系統提供者皆應遵守;如果AI產生內容具有深偽(deep fake)效果,其系統部署者還應遵守額外的規定,揭露該內容係人工生成或操縱的結果[11]。 2. 通用AI模型的分級管理 AIA訂有通用AI模型的共通義務[12],並根據模型的能力判定其是否具有系統性風險(systemic risks)。[13]所有的通用AI模型提供者都須公開模型訓練內容的詳細摘要,並遵守歐盟著作權法的規定[14];而具有系統性風險的通用AI模型提供者,還須負擔額外的義務。[15] (三)治理組織 1. AI辦公室 為順利實施AIA,執委會已成立一「人工智慧辦公室」(AI Office,下稱AI辦公室),負責促進、監督AIA落實,它同時也是通用AI模型的監管機構。[16]AIA框架下,會員國市場監管機構僅負責AI系統的監管工作。 2.人工智慧委員會 除了AI辦公室外,還設有一「人工智慧委員會」(AI Board),由歐盟會員國派代表成立,主要負責協調各國的作法、交換資訊、以及提供各國市場監管機構建議。[17] 3.「獨立專家科學小組」與「諮詢論壇」 歐盟層級還有兩個支持性的組織:「獨立專家科學小組」(Scientific Panel of Independent Experts)和「諮詢論壇」(advisory forum),可提供落實AIA規範所需之專業技術知識與實施建議。 獨立專家科學小組的成員係由執委員會指定,執委會將視任務所需的最新科學或技術專業知識進行挑選,該小組最重要的任務在於支援通用AI模型和系統相關規定的實施和執行,包括向AI辦公室通報存在系統性風險的通用AI模型、開發通用AI模型和系統能力評估的工具和方法等。[18] 諮詢論壇成員亦由執委會指定,執委會應顧及商業和非商業利益間的平衡,從AI領域具有公認專業知識的利害關係人當中,尋找適當的人選。諮詢論壇主要任務是應理事會或執委會的要求,準備意見、建議和書面報告,供其參考。[19] 4.會員國內部各自之市場監管機關 在會員國層級,由各國市場監管機關負責督導AIA規定之實施[20],各國並將成立或指定公告主管機關(notifying authority),負責進行公告合格評估機構(notified bodies)評選與指定事宜,日後將由各公告合格評估機構負責AIA下的第三方合格評估業務。[21] (四)實施與配套措施 1.分階段實施 AIA的規定將在該法生效24個月後開始實施,然考慮到歐盟和會員國的治理結構尚在討論中,且業界在法遵上也需要時間調適,因此AIA的部分條文將分階段實施。 (1) AIA通則以及不可接受風險的AI系統禁令在該法生效6個月後即實施; (2) 通用AI模型、第三方認證機構和會員國公告合格評估機構、以及違反AIA的罰則等相關規範,於該法生效12個月後開始實施; (3) AIA附件III清單之高風險AI系統相關義務,要等該法生效36個月後才開始實施; (4) 而AIA生效前已上市之通用AI模型提供者,應在該法生效36個月內,採取必要行動使其模型合乎AIA規定。[22] 2.罰則規定 AIA訂有罰則,在AIA措施正式實施後,違規者可能面臨鉅額罰款[23]。 3.配套措施 由於AIA以建立監管框架為主,相關規定之實施細則或標準,這仍待執委會逐步制定。因此,在AIA各配套辦法提出之前,AI辦公室將以「實踐守則」(codes of practice)[24]和「行為守則」(codes of conduct)之訂定與推動為主,另外又提出「人工智慧公約」,希望藉由此些配套措施協助受AIA規範的各方,使其在最短時間內能順利履行其應盡義務。 (1) 「實踐守則」 實踐守則(codes of practice)針對的是通用AI模型提供者。AI辦公室將鼓勵所有通用AI模型提供者推動和參與實踐守則的擬定,AI辦公室亦將負責審查和調整守則內容,確保反映最新技術及利害關係各方的觀點。實踐守則應涵蓋通用AI模型和具系統性風險的通用AI模型提供者的義務、系統性風險類型和性質的風險分類法(risk taxonomy)、以及具體的風險評估和緩解措施。[25] (2) 「行為守則」 行為守則(codes of conduct)之目的在於推動AIA的廣泛適用,由AI辦公室和會員國共同推動,鼓勵高風險AI系統以外的AI系統提供者、部署者和使用者等響應,自動遵循AIA關於高風險AI的部分或全部要求。AI系統的提供者或部署者、或任何有興趣的利害關係人,都可參與行為準則。[26] (3) 「人工智慧公約」 AIA中的高風險AI系統以及其他重要規定需待過渡期結束才開始適用[27],因此執委會在AIA的框架外,另提出「人工智慧公約」(AI Pact,下稱AI公約)計畫,鼓勵企業承諾在AIA正式實施前,即開始實踐該法規範。 AI公約計畫有兩個行動重點,其一是要提供對AI公約有興趣的企業有關AIA實施流程的實用資訊,並鼓勵這些企業進行交流。AI辦公室將舉行研討會,使企業更了解AIA以及如何做好法遵的準備,而AI辦公室也可藉此收集企業的經驗反饋,供其政策制定參考。 另一個重點是要推動企業承諾儘早開始實踐AIA,承諾內容包括企業滿足AIA要求的具體行動計畫和行動時間表,並且定期向AI辦公室報告其承諾進展;AI辦公室會收集並發布這些報告,此作法不僅有助提高當責性和可信度,亦可增強外界對該些企業所開發技術的信心。[28] 參、事件評析 執委會希望透過AIA提供明確的法律框架,在推動AI創新發展之際,也能確保民眾的安全權利保障,並希望AIA能夠複製GDPR所創造的「布魯塞爾效應」(Brussels Effect),為國際AI立法建立參考標竿,使歐盟成為AI標準的領導者。然AI技術應用的革新發展速度驚人,從AIA草案提出後的兩年內,AI技術應用出現顛覆性的變革,生成式AI的技術突破以及該技術已顯現的社會影響,使得歐盟內部對於AIA的監管格局與力度有了更多的討論,看法莫衷一是。因此,AIA最後定案時,內容有多處大幅調修與新增。 (一)AI系統定義與OECD一致 首先,執委會的原始草案中,強調AI系統的定義方式應根據其關鍵功能特徵,並輔以系統開發所使用之具體技術和方法清單。[29]然AIA最後捨棄詳細列舉技術和方法清單的作法,改採與OECD一致的定義方式,強調AI的技術特徵與運行模式。採用OECD的定義方式固然係因OECD對AI系統的定義更具彈性,更能因應日新月異的AI新技術發展;這樣的作法亦有助AIA與國際接軌、更為國際社會廣泛接受。 (二)規範通用AI模型並課予生成式AI透明性義務 其次,生成式AI衍生的眾多問題和潛藏風險引發全球熱議,在AIA的三方會談過程中,生成式AI的管制也是談判的焦點議題。原本外界以為歐盟應該會在AIA嚴加控管生成式AI的應用,尤其是「深偽」(deep fake)技術的應用。然而「深偽」技術在AIA的分類方式下,卻僅屬於有限風險的系統,雖負有透明性義務,卻僅需揭露若干資訊即可。「深偽」的問題暴露出生成式AI系統的監管難題,最後AIA拍板定案,僅在透明性義務的章節中提及生成式AI,並且以技術描述的方式取代一般慣用的「生成式AI」(Generative AI)一詞。 歐盟另闢途徑管理生成式AI。AIA的原始草案僅針對AI系統,並無管制AI模型的條文[30],然有鑑於生成式AI模型係以通用AI模型開發而成,因此AIA新增「通用AI模型」專章,從更基礎的層次著手處理生成式AI的問題。在AIA生效後,歐盟境內的通用AI模型將統一由歐盟的AI辦公室負責監管。考慮到生成式AI應用的多樣性,歐盟從通用AI模型切入、而不針對生成式AI進行管理,可能是更務實的作法。 (三)推出多項配套措施強化AI治理與法遵 最後,歐盟在AIA框架外,針對不同的對象,另建多項配套措施,鼓勵非高風險AI系統提供者建立行為守則、推動通用AI模型提供者參與「實踐守則」的制定和落實、並號召AI業者參與「AI公約」提早遵循AIA的規定。這些措施可指導相關參與者採取具體的步驟與作法達到合規目的,俾利AIA之實施獲得最佳成效。 AIA眾多執行細則尚待執委會制定,包括高風險AI清單的更新、通用AI模型的分類方式以及標準制定等,這些細節內容將影響AIA的實際執行。我國應持續關注其後續進展以因應全球AI治理的新格局,並汲取歐盟經驗作為我國AI監管政策與措施的參考。 [1]Regulation Of The European Parliament And Of The Council Laying Down Harmonised Rules On Artificial Intelligence (Artificial Intelligence Act) And Amending Certain Union Legislative Acts, 2024, OJ L( 2024/1689), http://data.europa.eu/eli/reg/2024/1689/oj (last visited July. 12, 2024). [2]High-Level Expert Group on AI of the European Commission, Ethics Guidelines for Trustworthy Artificial Intelligence, April 8, 2019. https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai (last visited June 25, 2024). 該小組在2018年12月提出草案並徵求公眾意見,並於2019年4月正式提出該倫理指引。 [3]European Parliament, Press Release: Artificial Intelligence Act: deal on comprehensive rules for trustworthy AI, Dec. 9, 2023, https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai (last visited June 25, 2024). [4]European Parliament, Press Release: Artificial Intelligence Act: MEPs adopt landmark law, March 13, 2024, https://www.europarl.europa.eu/news/en/press-room/20240308IPR19015/artificial-intelligence-act-meps-adopt-landmark-law (last visited June 25, 2024). [5]European Parliament, Position of the European Parliament adopted at first reading on 13 March 2024 with a view to the adoption of Artificial Intelligence Act, https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.html# (last visited June 25, 2024). [6]AIA, art. 113. [7]AIA和OECD對AI系統的定義的差異僅在於用字遣詞及語句編排方面,兩者在意涵上其實是一致的。See AIA, art. 3(1). [8]AIA, art. 2. [9]AIA, art. 3(63). 執委會原先認為,AI模型無法獨立使用,僅需鎖定AI系統監管即可,然而生成式AI衍生的諸多問題,令人擔憂放任通用AI模型發展可能產生無法預期的後果,因此歐盟最後決定在AIA條文中加入通用AI模型規範。 [10]但AIA訂有豁免適用的規定,包括國安和軍事領域、科學研究和開發目的、以及純粹個人非專業活動使用的AI皆不受AIA約束。AI價值鏈的其它參與者還包括進口商、授權代表、經銷商等。See AIA, art. 2. [11]AIA, art. 50. [12]AIA, art. 53. [13]AIA, art. 51. 「系統性風險」是指通用AI模型特有的高影響力所造成的風險。由於其影響範圍廣大,或由於其對公共健康、安全、公眾的實際或合理可預見的負面影響,進而對歐盟市場產生重大影響。See AIA, art. 3(65). [14]AIA, art. 53. 在上市前用於研究、開發和原型設計活動的通用AI模型除外。 [15]AIA, art. 55.例如進行模型評估、進行風險評估和採取風險緩解措施、確保適當程度的網路安全保護措施。 [16]Commission Decision On Establishing The European Artificial Intelligence Office, C(2024) 390 final, 2024, https://ec.europa.eu/newsroom/dae/redirection/document/101625 (last visited June 25, 2024). [17]AIA, art. 65. [18]AIA, art. 68. [19]AIA, art. 67. 該條款規定,歐盟的基本權利局(The Fundamental Rights Agency)機構、歐盟網路安全局(The European Union Agency for Cybersecurity)、歐洲標準化委員會 (CEN)、歐洲電工標準化委員會 (CENELEC) 和歐洲電信標準協會 (ETSI) 應為諮詢論壇的永久成員。 [20]AIA, art. 70. [21]AIA, art. 28 & 29. [22]AIA, art. 113. [23]AIA, art. 99. [24]AIA, art. 56. [25]AIA, recital 116 & art. 56. [26]AIA, art. 95. [27]AIA有關治理組織、罰則、通用AI模型的規定於該法生效12個月後才開始實施,屬於附件二範圍的高風險AI系統的相關規定則遲至該法生效36個月後才實施。AIA, art. 113. [28]European Commission, Shaping Europe’s digital future: AI Pact, (last updated May 6, 2024) https://digital-strategy.ec.europa.eu/en/policies/ai-pact (last visited June 25, 2024). [29]Proposal for a Regulation Of The European Parliament And Of The Council Laying Down Harmonised Rules On Artificial Intelligence (Artificial Intelligence Act) And Amending Certain Union Legislative Acts, COM(2021) 206 final, recital (6). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206 (last visited June 25, 2024). [30]執委會的原始草案中,僅於第四章關於AI系統透明性的條文中提及具有「深偽」(deep fake)能力的系統應負揭露義務。

歐盟發布《營業秘密訴訟趨勢報告》指出,企業應明確界定營業秘密範圍與強化保密措施之落實

歐盟智慧財產局(EUIPO)於2023年6月底發布了《歐盟營業秘密訴訟趨勢報告》(Trade Secrets Litigation Trends in the EU),本報告包含三大部分,分別為判決之量化分析、法律要件之質化分析、各會員國之重要判決摘要,內容涵蓋了2017年1月1日至2022年10月31日間,27個會員國的695個訴訟案件。其重點摘要如下: 一、案件涉及之類型分析 1、約41%的案件與離職員工有關。 2、約17%的案件與商業合作對象有關。 3、約30%的案件雙方無明確的契約關係(但報告中指出此項統計包含員工離職後自行創業,原告以該離職員工及該公司為被告的情況)。 二、案件涉及之營業秘密標的分析(同一訴訟案件可能包含多個標的) 1、約62%的標的為「商業性營業秘密」。其中配銷通路(distribution methods)、廣告策略、行銷資料、客戶名單等供應鏈「下游資訊」(downstream information)占31%最多;定價模式及會計資料等「財務資訊」占13%次之。 2、約33%的標的為「技術性營業秘密」,其中有19%與「製程」(manufacturing process)有關。 3、僅3%的標的為原型(prototypes)或尚未公開的產品設計。 三、案件涉及之產業別分析(根據「歐盟標準行業分類第二修正版NACE Rev. 2」分類) 整體來說,歐盟營業秘密訴訟案件所涉及的產業別相當多元,簡要說明如下: 1、排名第一的產業別為「製造業」(manufacturing),占32%。其中最常涉訟的子產業別為「機械設備製造業」(manufacture of machinery and equipment)及「化學製品製造業」(manufacture of chemicals and chemical products)。 2、排名第二的產業別為「批發及零售業;汽機車維修業」(wholesale and retail trade;repair of motor vehicles and motorcycles)占11%。 3、排名第三的產業別為「金融及保險業」(financial and insurance activities)及「專業、科學及技術服務業」(professional, scientific and technical activities),分別占7%。 四、被告提出之抗辯分析 報告中指出,原告提出之營業秘密主張被法院採認的比例僅27%,有約73%的案件法院最終是做出有利於被告的認定。而被告最常提出的抗辯,第一為抗辯原告所主張之系爭資訊是普遍共知(generally known),不具備秘密性;第二為抗辯原告未採取合理保密措施。 最後,報告結論分析歐盟營業秘密判決的三大趨勢,其中一項趨勢指出,營業秘密所有人若要強化契約措施(如保密協議)於訴訟中的證明力,應明確識別與界定系爭營業秘密的範圍。因此,企業應建立營業秘密管理的整體政策(譬如與員工簽訂之勞動契約中,應明確界定其保密義務範圍;員工離職時應落實離職面談,再次提醒員工應遵守的保密義務範圍等),以便於發生爭議時有效主張權利。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP