日本公正取引委員會(下稱公取委,其性質等同於我國公平交易委員會)在2019年12月11日的定期記者會上表示,由於近年出現許多關於「智慧財產及knowhow保護不足」的聲音,因此將針對大型企業在與新創、新興企業進行共同合作或研究時,是否有濫用優勢地位不當掠取智慧財產權及專業知識技能(knowhow)的情形,啟動實況調查。 公取委將以書面方式,針對日本國內約1萬家創業10年以內的IT製造新創產業與大企業間交易之實況進行調查。相關報導整理了以下幾種常見的問題交易型態: 獨占智慧財產:(1)契約約定大型企業無須經新興企業許可,即可逕自申請專利;(2)共同研究成果全歸大型企業所有;(3)要求無限制的無償授權。 限制與他人合作:(1)長時間禁止新興企業與其他業界合作;(2)相關專利遭到大企業所限制,導致事業無法拓展。 強勢締約:(1)大型企業對於契約的意思決定過於緩慢;(2)直接交付簽訂好的紙本契約,並告知不得變更契約內容。 公取委表示,因為新興企業具有開放式創新的價值,在與大型企業進行合作時,對於國家產業發展及競爭力的提升,能發揮很大的貢獻。因此藉由實態調查,確保建構出一個自由、公平的良性競爭環境,並預計在2020年依據調查結果,擬定相關指引或方針。
歐盟知識產權報告顯示智慧財產權對於企業經濟績效具有正相關歐盟智慧財產局(European Union Intellectual Property Office, EUIPO)與歐洲專利局(European Patent Office, EPO)於2021年2月所發布的研究報告「智慧財產權與企業績效」(Intellectual property rights and firm performance in the European Union)中,調查了歐盟成員國,總數超過12萬間公司,分析擁有智慧財產權(包含發明專利、設計專利與商標)跟未擁有智慧財產權的企業表現。 該研究報告分析結果顯示,擁有智慧財產權的企業經濟績效優於無智慧財產權的企業,平均來說擁有智慧財產權企業的員工工資比無智慧財產權企業的員工工資高19%,人均收入則平均高20%,這情況在中小企業更為明顯,擁有智慧財產權的中小企業比起無智慧財產權的中小企業,人均收入約高68%,再以擁有不同類型的智慧財產權進行區分,擁有發明專利的企業,其員工工資約高53%,收入約高36%,擁有設計專利的企業,其員工工資約高30%,收入約高32%,擁有商標的企業,其員工工資約高17%,收入約高21%。 該研究報告的內容尚無法找出智慧財產權有助於提升企業經濟績效的關鍵證據,但已呈現出智慧財產權與企業經濟績效之間具有正相關的趨勢,也凸顯出中小企業利用智慧財產權的巨大潛力。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。