日本經產省於2015年1月15日提出《不正競爭防止法》中期報告書並預計將提出不正競爭防止法修正案

  為因應日本2014年接連發生重大營業秘密外洩之事件而使日本國內公司蒙受鉅額損失,日本經濟產業省於去年9月開始,積極地展開《不正競爭防止法》修法專家會議,並在2015年1月15日舉行的會議上,揭露了彙整各界公開意見後之《不正競爭防止法》中期報告書(中間とりまとめ),以作為未來修法方向之指引。

  該報告書列出之修法方向區分為民事及刑事規定。第一,民事的修正重點有以下三點:(1) 減輕原告(受害企業)之舉證責任,而改由被告(非法使用營業秘密之企業)負擔;(2) 除斥期間之延長:將現行法規定之除斥期間,由10年延至20年;(3) 使用非法營業秘密而製造的物品,禁止轉讓或出口;以及新增邊境措施之規範。

  第二,刑事的修正重點則有以下六點:(1) 擴大國外犯罪的處罰範圍:目前現行法僅規範「日本國內所管理之營業秘密」在國外「使用、開示」 之行為,未來將新增處罰在國外之「取得」營業秘密之行為;(2) 新增未遂犯規定,同時將繼續檢討新增共犯及教唆之處罰態樣;(3) 現行法僅規範竊取營業秘密者本人以及藉由前者直接不法取得營業秘密者為處罰對象,但鑒於智慧型手機、平版電腦等裝置(携帯情報通信端末)之普及,造成營業秘密的竊取及使用型態趨向多樣化,是故未來將新增第三人不法取得之相關處罰規定;(4) 使用非法營業秘密而製造的物品,禁止轉讓或出口:新增相關刑罰規定;(5) 法定刑之提高:目前個人最高罰金為1000萬日圓、企業則為3億日圓,未來預計調整罰金之上限;並且,將新增沒收犯罪收益及海外加重處罰之規定;(6) 擬由告訴乃論改為非告訴乃論。

  綜上,經產省力爭在2015年1月26日開始的通常國會期間內,依上述之改正要點為基礎,正式提交《不正競爭防止法》之修正案,預計最快將於2016年開始實行新法 ,後續的立法進度,值得吾人持續關注。

相關連結
相關附件
※ 日本經產省於2015年1月15日提出《不正競爭防止法》中期報告書並預計將提出不正競爭防止法修正案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6773&no=55&tp=1 (最後瀏覽日:2026/02/04)
引註此篇文章
你可能還會想看
哥本哈根會議集思討論國際綠色技術移轉機制議題,實質突破性進展待後續再議

  去(2009)年12月19日在丹麥哥本哈根落幕的聯合國氣候變遷綱要公約(UNFCCC)第15次締約國會議(COP15)結論中,其中之一是各國達成將建立一套「技術機制」(Technology Mechanism),協助開發中國家獲得減少溫室氣體排放所需的綠色技術,促進綠色技術的發展及移轉,以作為實現減量及調適的支援措施,而這項機制將依據各國的環境條件及需求優先性分別進行。此外,會議並通過採納印度提出建構「氣候創新中心」網絡(Network of Climate Innovation Centers)之提議;不過整體而言,與其他氣候變遷議題一樣,建構國際綠色技術移轉機制之進展並不如預期。   國際間有關促進綠色技術移轉之討論,在UNFCCC第4條即有明文規定,不過這項議題直到2007年召開的COP13會議所宣布的「峇里島行動計畫」(Bali Action Plan)中,與減緩、調適、資金投資並列為後京都機制的四大主軸後,才獲得廣泛重視。而2008年召開的COP14會議中更進一步提出了「波茲南技術移轉策略方案」(Poznan Strategic Programme on Technology Transfer),由已開發國家透過適當的智慧財產權管理,提供開發中國家必要的綠色技術,以達成減緩的目標,當中包括技術需求及評估、技術資訊、有利環境、能力建構及技術移轉機制等具體作法。   在促進綠色技術擴散的大方向下,各國及國際組織也在今年陸續提出不同的倡議,並聚焦到智慧財產權上。諸如作為開發中國家代表的中國、印度及巴西即紛紛呼籲應仿效在緊急情況下對部分藥品專利之強制授權作法,使開發中國家得以免費使用對環境有益技術之專利;歐洲專利局、聯合國環境規劃署以及貿易暨永續發展國際中心三個組織也展開如何使專利制度能更加促進綠色技術之創新及擴散的研究工作。不過由於已開發國家擔心如此喪失龐大的商業利益,並減損創新研發的誘因,因此多採取保留態度。兩大陣營分歧的立場在哥本哈根會議中未能突破,而僅停留在過往共識的重申,也使得國際綠色技術移轉議題將留待2010年6月的波昂會議以及12月的墨西哥會議中持續再議。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

歐盟執委會提出醫藥品管理整體配套方案,保障歐盟境內大眾用藥安全

  為確保歐洲民眾於健康醫療方面之利益,歐洲製藥工業協會聯合會(European Federal Pharnaceutical Industrial Association;簡稱EFPIA)於2009年2月17日,向歐洲議會(European Parliament)提出建議,並敦促其應儘速通過歐盟執委會(European Commission)於去年年底所提出一項關於醫藥品安全、創新與易近用性之議案。而一位業界代表Günter Verheugen於當(17)日會面後指出:「此次會面,主要是希望能就新近執委會所提交之醫藥品管理整體配套方案(Pharmaceutical Package),進行初步意見之交換與討論」。   由於保障歐盟境內民眾之健康安全,實乃歐盟決策者(Decision-makers)所應掮負之重要責任,故EFPIA總幹事Brian Ager於此次會面交流之前,亦曾高聲向歐洲議會與各會員國家呼籲,應優先將病患安全(Patient Safety)議題納入考量,並採取果斷之行動;同時,其也指明,歐洲醫藥各界為尋求各種可能落實之方法,先前早已經歷過各個階段,並遲延了決策做成之時機;故,此次會面,除要為執委會提案之審查,奠定啟動之基外,亦盼能再次集聚並挹注歐洲醫藥各界之能量,於保護歐洲人民健康安全相關之行動當中。   關於歐盟執委會於去(2008)年底所提出之議案,由於其中有多項內容對歐洲醫藥各界之影響實廣且深;因此,該項提案目前業已廣泛地受到EFPIA與業者之重視。此外,就此項醫藥品管理整體配套方案中擬採行之具體立法規範措施,實包含如後3個面向:首先,是欲透過規範擬提昇藥物警戒(Pharmacovigilance)方法之現代化;其次,強化管制規範以減少假藥滲入歐洲整體醫藥品供應鏈之機會;最後,則是要要提供高品質之健康與醫藥品相關資訊給有需要之病患或大眾近用(Access)等。   由此可知,未來歐盟整體醫藥品管理立法方向,將分由3個不同之角度出發;並同時朝「改善歐洲大眾用藥安全」之目標前進;不過,在進一步進行條文化之前,前述由執委會所提出之醫藥品管理整體配套方案,將會先交由歐洲議會與歐盟理事會官員共同進行初步之討論。

國際因應智慧聯網環境重要法制研析-歐盟新近個人資料修法與我國建議

TOP