日本國會於本會期(2015年1月)中,進行個人資料保護法修正草案(個人情報保護法の改正案)的審議。修正草案研擬之際,歷經多次討論,IT總合戰略本部終於在2014年6月公布修正大綱,後於同年12月公布其架構核心。
本次修正,主要目標之一,是使日本成為歐盟(EU)所認可之個人資料保護程度充足的國家,進而成為歐盟所承認得為國際傳輸個人資料的對象國;為此,此次修正新增若干強化措施,包含(1)設立「個人資料保護委員會」;(2)明訂敏感資料(包含種族、病歷、犯罪前科等)應予以嚴格處理;(3)明訂資料當事人就其個人資料得行使查詢或請求閱覽等權利。
本次修正的另一個目標,則是促進個人資料利用及活用的可能性。2014年中,日本內閣府提出「有關個人資料利活用制度修正大綱」,提倡利用、活用個人資料所帶來的公共利益,並指出,過往的法規僅建構於避免個人資料被濫用的基礎,已不符合當今需求,且易造成適用上的灰色地帶,應透過修法予以去除;未來應推動資料的利用與活用相關制度,來提升資料當事人及公眾的利益。本次修正因此配合鬆綁,允許符合下述法定條件下,得變更個人資料之利用目的:(1)於個人資料之蒐集時,即把未來可能變更利用目的之意旨通知資料當事人;(2)依個人資料保護委員會所訂規則,將變更後的利用目的、個人資料項目、及資料當事人於變更利用目的後請求停止利用的管道等,預先通知本人;(3)須使資料當事人容易知悉變更利用目的等內容;(4)須向個人資料保護委員會申請。
目標間的兩相衝突,使得該案提送國會審議時,引發諸多爭議。論者指出:允許在特定條件上變更個人資料的利用目的,雖顧全資料利用的價值,但似不符合歐盟個人資料保護指令對於個人資料保護的基準,恐使日本無法獲得歐盟認可成為資料保護程度充足的國家,亦徹底喪失此次修正的最重要意義。
本文為「經濟部產業技術司科技專案成果」
美國聯邦通信委員會(FCC)批准,有線電視業者可對其基本電視服務進行完全加密,有線電視用戶將需要向有線電視業者租用機上盒或使用CableCARD的技術,以繼續收看有線電視。在本項新規則發布之前,有線電視業者被禁止在基本服務加密,有線電視用戶不需租用額外設備便能收看基本電視服務內容。業界人士表示,據估計目前約有近5%非法盜接的服務,造成每年約5億美元的收入損失,此一新規則有助於對抗訊號盜接的問題。 同時隨著數位有線電視普及程度的提高,大多數有線電視用戶已經透過機上盒或CableCARD技術收看有線電視,僅少部份用戶可透過特殊裝置接收數位電視基本服務,但因為此種接收方式無須加密,因此存在有盜接的問題,因此有線電視業者希望FCC能夠放寬規定,使業者可將整個有線電視系統均加密傳輸,避免訊號盜接的問題。 然而相對的,一些第三方公司所生產的設備將因為有線電視系統業者的加密,而無法提供低成本的替代裝置,有線電視用戶將必須向有線電視公司租用機上盒,部份第三方公司生產的機上盒具有DVR功能,如果系統業者完全加密他們的內容,這些第三方設備的生產將必須花費額外的成本與時間與系統業者協商。有線電視業者如Comcast自然是抱持樂觀其成的看法,全系統加密使業者可在遠端管理電視訊號之播送,而無須至消費者家戶進行,可節省人力與成本。
歐盟知識產權報告顯示智慧財產權對於企業經濟績效具有正相關歐盟智慧財產局(European Union Intellectual Property Office, EUIPO)與歐洲專利局(European Patent Office, EPO)於2021年2月所發布的研究報告「智慧財產權與企業績效」(Intellectual property rights and firm performance in the European Union)中,調查了歐盟成員國,總數超過12萬間公司,分析擁有智慧財產權(包含發明專利、設計專利與商標)跟未擁有智慧財產權的企業表現。 該研究報告分析結果顯示,擁有智慧財產權的企業經濟績效優於無智慧財產權的企業,平均來說擁有智慧財產權企業的員工工資比無智慧財產權企業的員工工資高19%,人均收入則平均高20%,這情況在中小企業更為明顯,擁有智慧財產權的中小企業比起無智慧財產權的中小企業,人均收入約高68%,再以擁有不同類型的智慧財產權進行區分,擁有發明專利的企業,其員工工資約高53%,收入約高36%,擁有設計專利的企業,其員工工資約高30%,收入約高32%,擁有商標的企業,其員工工資約高17%,收入約高21%。 該研究報告的內容尚無法找出智慧財產權有助於提升企業經濟績效的關鍵證據,但已呈現出智慧財產權與企業經濟績效之間具有正相關的趨勢,也凸顯出中小企業利用智慧財產權的巨大潛力。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
開原碼授權 印度要走自己的路印度理工學院的 Deepak Phatak 啟動了一項建立 Knowledge Public License (知識公共授權,簡稱 "KPL" )的計畫,這種授權計畫允許程式人員跟他人分享自己的點子,但是同時保留軟體的修改權。它很像柏克萊軟體發行計畫或 MIT 授權計畫。目的是希望為建立一種環境,開發者既可以借助開放原始碼的合作力量,又能保護個人的利益。這項計畫還有助於舒緩開原碼運動和專屬軟體商之間日趨緊張的關係。 Phatak 的授權計畫有著先天的數量優勢。由於委外的興起和繁榮,印度已經成長為一個重要的軟體發展中心。 Phatak 也發起了一項 Ekalavya 計畫,鼓勵大家提出開原碼運動的新概念。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。