日本個人資料保護法修正案允許變更利用目的引發各界議論

  日本國會於本會期(2015年1月)中,進行個人資料保護法修正草案(個人情報保護法の改正案)的審議。修正草案研擬之際,歷經多次討論,IT總合戰略本部終於在2014年6月公布修正大綱,後於同年12月公布其架構核心。

  本次修正,主要目標之一,是使日本成為歐盟(EU)所認可之個人資料保護程度充足的國家,進而成為歐盟所承認得為國際傳輸個人資料的對象國;為此,此次修正新增若干強化措施,包含(1)設立「個人資料保護委員會」;(2)明訂敏感資料(包含種族、病歷、犯罪前科等)應予以嚴格處理;(3)明訂資料當事人就其個人資料得行使查詢或請求閱覽等權利。

  本次修正的另一個目標,則是促進個人資料利用及活用的可能性。2014年中,日本內閣府提出「有關個人資料利活用制度修正大綱」,提倡利用、活用個人資料所帶來的公共利益,並指出,過往的法規僅建構於避免個人資料被濫用的基礎,已不符合當今需求,且易造成適用上的灰色地帶,應透過修法予以去除;未來應推動資料的利用與活用相關制度,來提升資料當事人及公眾的利益。本次修正因此配合鬆綁,允許符合下述法定條件下,得變更個人資料之利用目的:(1)於個人資料之蒐集時,即把未來可能變更利用目的之意旨通知資料當事人;(2)依個人資料保護委員會所訂規則,將變更後的利用目的、個人資料項目、及資料當事人於變更利用目的後請求停止利用的管道等,預先通知本人;(3)須使資料當事人容易知悉變更利用目的等內容;(4)須向個人資料保護委員會申請。

  目標間的兩相衝突,使得該案提送國會審議時,引發諸多爭議。論者指出:允許在特定條件上變更個人資料的利用目的,雖顧全資料利用的價值,但似不符合歐盟個人資料保護指令對於個人資料保護的基準,恐使日本無法獲得歐盟認可成為資料保護程度充足的國家,亦徹底喪失此次修正的最重要意義。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 日本個人資料保護法修正案允許變更利用目的引發各界議論, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6787&no=55&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
美國最高法院在Bilski v. Kappos案中仍然留下對於商業模式的可專利性做下模糊的判決

  美國最高法院於2010年6月28日對Bilski v. Kappos案作出5比4的拉距判決。原告Bilski為一家能源產品公司,其就一種讓買家或賣家在能源產品價格波動時,可用來保護、防止損失或規避風險的方法申請商業方法專利(Business Method Patent)。但美國商標專利局審查人員以此發明只是一種解決數學問題,而為抽象而無實體呈現的想法為理由而拒絕。經該公司於專利上訴委員會上訴無效後,繼續上訴至聯邦巡迴法院與最高法院。   最高法院拒絕適用前審以美國專利法第101條(35 U.S.C. §101),創造發明是否為有用的、有形的及有體的結果作為認定方法專利的標準。而最高法院多數意見係採用「機械或轉換標準」(machine or transformation test)為專利法第101條可專利性之標準,認定如果創造發明的方法能與機械器具或配件相結合或轉換為另外一種物品或型態時,即認定此方法具可專利性。惟經法院適用此標準後,仍認定原告的商業方法不具可專利性。   一些批評認為,目前「方法」和「轉換」等關鍵字的定義還不清楚,而該判決並沒有澄清這些爭議,甚至帶來更多的疑惑。美國律師Steven J. Frank認為,雖然最高法院的意見放寬了可專利性的標準,但是並沒有提及認定可專利性的其他標準。   該判決亦未明確指出商業方法究竟要符合哪些實質要件,方具有可專利性。相當多的電子商務中所使用的「方法」都有專利,最有名的大概就是亞馬遜公司的「一鍵購買(one-click)」的網路訂購方法,還有Priceline公司「反向拍賣」(reverse auction)的方法等。許多電子商務、軟體及財務金融相關業者在這個判決之後,對於商業方法的可專利性也感到相當的困惑。如果有方法專利的存在,那麼擁有這些專利的公司就可以放心了;但是,如果方法沒有可專利性,那麼對於現在擁有方法專利的權利人不啻是一個很壞的消息。是否一些比較不抽象的方法就具有可專利性,而比較抽象的方法就專利性,判定的標準又在哪裡,對此,法院並沒有加以說明,在法院明訂出更明確的標準之前,目前仍留給美國商標專利局來判定。

英國修正公布施行「2017年智慧財產權不正當威脅法」,使智慧財產權之法規範更具明確性

  英國智慧財產局於2017年10月1日修正公布施行智慧財產權不正當威脅法(IP Unjustified Threats Act 2017),使智慧財產權之法規範更具明確及一致性,並協助企業免於昂貴的訴訟費用。   所謂智慧財產權之不正當威脅(unjustified threat)係指無智慧財產權、智慧財產權已過期或無效、或雖未實際發生智慧財產權之侵權事實,卻對他人提起侵權之法律行為或措施,該行為耗費成本、引起市場混亂,致使客戶出走並造成企業合法販售商品或服務之業務停滯,並扼殺智慧財產創新之本質,破壞市場衡平。   因涉及智慧財產侵權之法規範複雜、不明確或不一致,且當有侵權之虞尚未進入司法審判程序前其紛爭難以解決,致使智慧財產權人(特別是擁有智慧財產權之中小企業)不願意實施其權利。因此,修正公布施行智慧財產權不正當威脅法將有助於智慧財產權人或第三人知悉何種行為算是威脅,提供明確之規範框架,鼓勵企業建立商談(talk first)文化,使爭議雙方可交換訊息以解決紛爭,而非興訟。並使企業或個人在智慧財產權爭議中取得公平合理的地位,以保護客戶及供應鏈(包括零售商或供應商),避免企業或個人因不正當威脅、惡性之商業競爭,而遭受損害。再者,智慧財產權之不正當威脅法適用於專利權、商標權及設計權,使智慧財產權法複雜之規範更趨明確且一致。

美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統

紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。

拜登政府宣布採取促進負責任AI創新之新行動,以保護美國人民權利與安全

拜登政府於2023年5月4日宣布將採取促進負責任AI創新之新行動,表示公司於部署或公開其產品前,應致力於降低AI風險,並強調風險管理與保障措施的重要性,以防止AI對個人與社會造成潛在危害。此外,拜登總統於2月簽署「透過聯邦政府進一步推動種族平等和支持弱勢群體」行政命令(Executive Order on Further Advancing Racial Equity and Support for Underserved Communities Through The Federal Government),指示聯邦政府機關在設計和使用AI等新技術時,應避免偏見,並保護公眾免受演算法歧視。促進負責任AI創新之新行動包括: 一、投資負責任AI的研發 美國國家科學基金會(National Science Foundation)宣布撥款1.4億美元以啟動7個新的國家AI研究所,未來全美將有25個國家級AI研究所。除有助於促進公私部門之間合作外,將強化AI研發基礎設施、支持多元化AI勞動力發展,及推動氣候、農業、能源、公共衛生、教育與資安等關鍵領域之突破。 二、公開評估現有的生成式AI系統(generative AI systems) Anthropic、Google、Hugging Face、微軟、NVIDIA、OpenAI和Stability AI等領先AI開發商將參與AI系統獨立公開評估,以評估其模型是否符合AI權利法案藍圖(Blueprint for an AI Bill of Rights),及AI風險管理框架(AI Risk Management Framework)所提出之原則與實踐,並使企業及開發人員能就所發現問題,進一步採取解決措施。 三、提出政策引導聯邦政府減輕AI風險及提升AI利用機會 美國行政管理預算局(Office of Management and Budget)宣布,將於2023年夏季發布有關聯邦政府機關各部門使用AI系統之政策指引草案,並徵詢公眾意見。

TOP