歐盟普通法院(The General Court of the European Union)於今年(2016)2月25日針對運動品牌Puma SE(以下簡稱Puma)提出之商標異議做出了判決。本判決認為,Puma所擁有的美洲獅商標(詳參圖1、圖2),與其異議之波蘭鞋廠Sinda Poland Corporation sp.(以下簡稱Sinda Poland)(詳參圖3)申請中的商標確有相似。此判決翻轉了歐盟內部市場協調局(Office for Harmonization in the Internal Market,以下簡稱OHIM) 所作出兩商標不近似之決議。本判決中,歐盟普通法院判決認為,OHIM應撤銷Sinda Poland之商標申請,並命令Sinda Poland及OHIM支付Puma相關訴訟費用。 本爭議起始於2012年,波蘭鞋廠Sinda Poland申請一歐洲共同體商標(Community Trade Mark,簡稱CTM),該商標為一跳躍的貓科動物形狀(詳參圖3),並指定使用於鞋類及運動鞋類產品。OHIM於2012年9月公告Sinda Poland申請的商標,同年11月Puma向OHIM提起異議,表示Sinda Poland之商標(詳參圖3)與Puma之美洲獅商標(詳參圖1、圖2)過於近似,有令消費者混淆商品或服務來源之虞。然而,OHIM於2014年決議認為,Sinda Poland之商標係兩種跳躍動物之結合,形成獨特的動物圖案設計,與Puma之美洲獅商標不相似,應不具有混淆消費者的疑慮。 Puma向歐盟普通法院上訴,認為法院應撤銷Sinda Poland之商標申請,並要求Sinda Poland支付相關訴訟費用。歐盟普通法院於今年2月25日做出決議,認為Sinda Poland侵害了Puma之商標權,並指出OHIM未將系爭兩商標在視覺上及概念上之整體相似度列入考量。該法院認為「Puma與Sinda Poland之商標皆為黑色的動物剪影,兩商標之動物背部及腹部弧度雖有所不同,但兩商標無法否認地有相似之處。」 經過為期將近四年的爭訟,Puma成功撤銷了Sinda Poland近似商標之申請。對國際知名運動品牌如Puma而言,近似商標的存在將會造成品牌知名度及商譽的打擊。如何藉由排除近似商標之申請以鞏固品牌形象及消費者認同,對品牌企業而言是必須面對的重要課題。本案中,Sinda Poland之近似商標仍在申請階段時Puma即提起異議。Puma積極的維權行動,是品牌廠商能夠藉以參照的模範。 圖1 Puma跳躍美洲獅商標(註冊於尼斯分類第1-42類)(圖片來源:歐盟普通法院判決) 圖2 Puma跳躍美洲獅商標(註冊於尼斯分類第18、25、28類)(圖片來源:歐盟普通法院判決) 圖3 Sinda Poland欲申請之商標(註冊於尼斯分類第25類) (圖片來源:歐盟普通法院判決) 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
紐約通過法案,將禁止企業使用未能通過偏見審計的自動化招募系統紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。 於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括: 一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。 二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。 如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。
歐盟法院判決釐清GDPR民事賠償不受損害最低程度限制歐盟法院(Court of Justice of the European Union, CJEU)於2023年12月14日對Gemeinde Ummendorf(C‑456/22)案作出判決。歐盟法院試圖釐清《歐盟一般個人資料保護規則》(General Data Protection Regulation, GDPR)第82條的民事求償規範中,資料主體受到非財產上的損害要到何種程度才可獲得賠償。 本案源自於兩位自然人原告與德國的烏門多夫市政府(Municipality of Ummendorf)之間的紛爭。2020年,烏門多夫市政府未經兩位原告同意情況下,在網路上公布市議會議程與行政法院判決,這些資訊內容均多次提及兩位原告的姓名與地址。兩位原告認為市政府故意違反GDPR,因此依據GDPR第82條請求市政府賠償,並進一步主張該條意義下的非財產損害,不需要任何損害賠償門檻。然而,市政府則持相反意見。 長久以來,德國法院傾向認為,GDPR的非財產上損害需要超過某個「最低損害門檻」才可獲得賠償。然而,承審法院決定暫停訴訟程序,並將是否應有「最低損害門檻」以及其基準為何的問題,提交給歐盟法院進行先訴裁定。 歐盟法院考慮到,GDPR的宗旨在於確保在歐盟境內處理個人資料時對自然人提供一致和高水準的保護,如要求損害必須達到一定的嚴重性閾值或門檻才可賠償,恐因為成員國法院認定的基準不同,進而破壞各國實踐GDPR 的一致性。因此,歐盟法院最後澄清,GDPR的民事賠償不需要「最低損害門檻」,只要資料主體能證明受有損害,不論這個損害有多輕微,都應獲得賠償。