繼eBay 於 今年6月4日因未制止網拍業者於eBay 網站上拍賣仿冒品被法國法院( The Tribunal de Grande Instance in Troyes)判決敗訴 、 須與網拍業者共同賠償精品業者愛瑪士 (Hermes)2萬歐元後,不到一個月的時間,另一法國法院( The Tribunal de Commerce in Paris) 於6月30日再度判定eBay因任由網拍業者拍賣仿冒物品而需賠償LVMH集團共3860萬歐元並禁止eBay在其網站上販賣LVMH集團旗下包括迪奧(Dior)、嬌蘭(Guerlain)、紀梵希(Givenchy)及Kenzo 4個品牌之香水。 eBay 表示為了保護品牌業者的智慧財產權,其已投資了超過2000萬美元建置相關機制(The Verified Rights Owner) 讓品牌業者可以容易的發現仿冒的網拍品並通知eBay 將該物品下架。但愛瑪士及LVMH集團皆認為該機制尚不足以杜絕仿冒品的銷售。 針對LVMH之判決,Vanessa Canzini, eBay 的發言人表示 “如果有仿冒品出現在eBay 的網站上, eBay會迅速地將該物品下架,但此次的判決非關仿冒品”。 Sravanthi Agrawal, eBay 的另一發言人表示 “此次判決的重點在銷售管制 (指LVMH集團企圖壟斷其銷售管道),因eBay 並非LVMH集團所授權的銷售管道之一”。 eBay 表示LVMH集團的壟斷行為將對消費者造成傷害,將代表消費者提起上訴。 以上兩案經由法國法院針對拍賣網站提供平台販售仿冒品之判決結果預計將於國際間引發連鎖效應。一位美國智財律師表示美國法院目前認為在美國商標法下,eBay 有義務將仿冒品從其網站上移除。而法國法院的判決則更進一步要求拍賣網站在仿冒品被放上網站拍賣前就有義務制止其被拿出來販售。法國法院的見解如未被推翻將可能鼓勵其它國法院針對類似案件做出相同的判決結果。
歐盟法院判決二手軟體銷售合法歐盟法院在UsedSoft GmbH v. Oracle International Corp.(Case C-128/11)一案中,認定軟體開發商之散佈權在第一次銷售後即耗盡,不得限制其後二手軟體之再銷售。此一判決發展將影響軟體開發商之市場銷售策略。 本案軟體開發商Oracle以授權合約中的禁止移轉條款為據,起訴欲終止UsedSoft的二手軟體銷售模式。在此商業模式中,原始被授權人書面說明其被授權使用某軟體,同時聲明後續不再使用,相關文件經公證後,UsedSoft即以此文件及合約進行二手軟體的銷售,新的使用者可直接由UsedSoft取得軟體。 本案的關鍵點在於著作權是否隨著軟體第一次銷售而權利耗盡,如權利耗盡則合約中的禁止移轉條款將無任何效力。在傳統軟體光碟銷售的情形,被授權人可以將軟體再轉賣給任何人,權利耗盡是被確認的,但網站下載的軟體販售模式,權利是否隨之耗盡,則不無疑問。 歐盟法院在本案判決中表示,不管是負載於光碟或網站下載的軟體銷售,一旦開發商售出軟體,其權利即隨之耗盡;但同時也指出,如果原授權使用數量較多,權利耗盡並不得作為後續二手軟體切割販售授權的依據,開發商也不因此判決而必須提供軟體支援給二手被授權人。 此一判決可能刺激二手市場的成長,但同時也可能對軟體開發商帶來負面影響,開發商無法再掌握確實的被授權人,也無有效的方法確認原始授權人是否仍使用軟體。建議軟體開發商應檢視其授權作業,並嘗試從授權合約中處理,例如增加授權轉讓時應通知開發商的條款等。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現