費城市議會於105年6月17日以13票對4票通過對含糖飲料每盎司課徵1.5美分的稅,預計於106年1月正式實施。 由於含糖飲料,容易導致肥胖及糖尿病,尤其在費城有68%的成人與41%的孩童過胖,此法案目的即在於勸阻消費者將多餘的錢用來購買這些不健康的飲料,希望能藉此幫助他們更健康。此法案通過後,估計每瓶裝兩公升的飲料及六盒裝的蘇打水各將漲價1美元左右,但是牛奶、新鮮水果或蔬菜含量50%以上的飲料則不在課稅範圍。此外,那些可以讓消費者自己添加糖的飲料,譬如咖啡,也不在課稅範圍,這意味著運動飲料、糖水、罐裝咖啡以及已添加糖的茶類都將被課稅,故有稱之為「汽水稅」。 依據費城財政局預估,汽水稅將使市府稅收增加9,100萬美元,預計運用在學前托兒班,學校,圖書館,娛樂中心,及其他公共場所,稅收也將資助抵免販售健康飲品企業的稅收。市長 Jim Kenny 也公開支持這項稅收,並在法案通過後表示這項稅收對於該市的社區及教育系統將會帶來歷史性的貢獻。 根據費城市新聞網(Philly.com)於16日報導:「這項稅收的徵收對象為飲料經銷商,目前尚無法統計將有多少稅收能回饋給消費者,但是估計12盎司的飲料約徵收18美分,2公升的飲料約徵收1美元,以及12瓶裝的飲料約徵收2.16美元。」。為此,飲料業者表達激烈的反對,並在法案通過後發表聲明表示將採取法律行動,並表示此項稅收並未考慮到低收入戶以及消費者對於無熱量飲料的選擇,所以是不公平的。而且這項稅收不僅影響費城人,對於所有美國人來說具有歧視性且極不受到歡迎。儘管美國飲料協會耗費了大筆的廣告費用來阻擋這項稅法的通過,費城市議會最後仍通過這項法案。 類似法案早在2014年,加州柏克萊市就已通過。只是,費城成為全美第一個針對含糖飲料課稅的大城市,其造成之影響較為顯著,目的在於減少含糖飲料的消費。至於其他城市,包括San Francisco(舊金山) 和 Boulder, Colo.(科羅拉多波德),正在考慮相似的立法,不過至今尚未通過。
中國大陸公布「專利優先審查管理辦法」中國大陸國家知識產權局於2017年6月27日公布「專利優先審查管理辦法」,將自2017年8月1日起施行,對符合規定之發明、實用新型、外觀設計專利申請提供快速審查管道。同時廢止2012年之「發明專利優先審查管理辦法」,使優先審查制度之適用不再以發明專利為限。 按「專利優先審查管理辦法」第3條所揭,以下6種專利申請得請求優先審查: 涉及節能環保、新一代資訊技術、生物、高端裝備製造、新能源、新材料、新能源汽車、智慧製造等國家重點發展產業。 涉及各省級和設區的市級人民政府重點鼓勵的產業。 涉及互聯網、大數據、雲計算等領域且技術或者產品更新速度快。 專利申請人或者複審請求人已經做好實施準備或者已經開始實施,或者有證據證明他人正在實施其發明創造。 就相同主題首次在中國提出專利申請又向其他國家或者地區提出申請的該中國首次申請。 其他對國家利益或者公共利益具有重大意義需要優先審查。 作為中國大陸十三五時期所提出之智財法規,或可從中得知未來中國大陸重點發展之技術與智財領域。 台灣專利優先審查制度明訂於專利法第40條、第101條,惟智慧局得優先審查者,僅限於已公開之發明申請案有非專利申請人為商業上實施時或舉發案涉及侵權訴訟案件之審理者。適用對象、範圍與中國大陸優先審查制度有別,我國廠商、研發人員於大陸申請專利時,應予注意。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
國際間科學專家利益衝突管理規範趨向-以美、歐藥品審查機構科學諮詢委員會專家利益衝突解決政策與機制為例 日本文化廳發布《人工智慧著作權檢核清單和指引》日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。