音樂串流服務網站鼻祖Grooveshark正式關閉

  美國音樂串流服務網站Grooveshark於2015年4月30日在紐約聯邦法院與三家唱片公司(Warner Music Group, Universal Music Group, Sony Music Entertainment)達成和解協議,以避免由陪審團判決(jury verdict)所帶來高達7億3千6佰萬美金的侵權賠償金。Escape Media Group以5千萬美金、公開道歉及關閉經營將近10年的Grooveshark網站為代價結束了這起爭訟多年的著作權訴訟案。

  Grooveshark網站的成立理念爲提供使用者上傳音樂的平臺,樂迷可透過平臺互相分享與檢索音樂,因此網站原本適用於數位千禧年著作權法(Digital Millennium Copyright Act)中的避風港原則。惟Grooveshark網站實質上透過員工上傳盜版音樂,此一做法已明顯超出避風港原則的保護範圍。紐約聯邦法院法官於去年秋季的裁定中指出,Escape Media Group透過員工上傳盜版音樂獲取利益為無可爭辯的證據,因此認爲該公司應對著作侵權負責。

  紐約聯邦法院法官於審前會議中指出一旦Escape Media Group的故意侵權罪成立,每首歌曲應賠償15萬美金的侵權賠償金,而網站目前擁有近5千首歌曲,因此侵權賠償金額將高達7億3千6佰萬美金。此裁定成爲了此案達成和解協議的催化劑。對於此次的訴訟結果,美國唱片業協會(The Recording Industry Association of America,)代表三家唱片公司表示此次的和解成功杜絕了侵權音樂的主要來源,對於藝術工作者而言十分可貴。

相關連結
※ 音樂串流服務網站鼻祖Grooveshark正式關閉, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6869&no=55&tp=1 (最後瀏覽日:2025/12/02)
引註此篇文章
你可能還會想看
脫歐協議草案:英國將繼續保護已註冊或已授予的智慧財產權

  歐盟委員會(European Commission)於2018年2月28日公佈了歐盟與英國脫歐協議草案(The draft Brexit Withdrawal Agreement),其中規定在英國將會持續地保護先前已註冊或已授予的智慧財產權。   根據該協議草案第50(1)條規定,先前在歐盟已註冊或被核准的商標、設計或植物品種權的持有人,在過渡期結束之前,不須再經任何復審,視同已在英國註冊且具可實施性的智慧財產權。而關於地理標誌、原產地名稱和地方傳統特色,在第50(2)條亦有類似規定。   該協議草案有:智慧財產權註冊程序之規定(第51條);英國繼續就歐盟特定會員國已註冊之商標或外觀設計提供保護(第52條);英國繼續就未註冊的共同體設計提供一定程度的保護(第53條);繼續保護數據庫(第54條);申請歐盟商標和共同體之植物品種權享有優先審查權(第55條);在英國申請植物補充保護證書享有優先權(第56條)及權利耗盡(第57條)等規定。   惟歐洲專利體系以歐洲專利公約(European Patent Convention)為基礎。 因此,有關專利的相關規定未在英國脫歐協議草案出現,亦未在將來的一元專利系統(Unitary Patent system)中被提及,而此系統係源自於兩項歐盟的規章。   目前該協議草案已由歐盟委員會提出,首先將讓歐盟各成員國和歐洲議會先進行磋商,最後再與英國進行協商。

日本政府怎樣對公部門管制DeepSeek?

日本政府怎樣對公部門管制DeepSeek? 資訊工業策進會科技法律研究所 2025年07月07日 2025年2月3日,日本個人情報保護委員會(Personal Information Protection Commission,簡稱PPC)發布新聞稿指出[1],DeepSeek所蒐集的資料,將會儲存在中國的伺服器裡,且為中國《國家情報法》的適用對象[2]。這可能將導致個人資料遭到中國政府調用或未經授權的存取。作為中國開發的生成式AI,DeepSeek雖以優異的文本能力迅速崛起,卻也引發資安疑慮。 身處地緣政治敏感區的日本對此高度警覺,成為率先提出警告的國家之一。台灣與日本面臨相似風險,因此日本的應對措施值得借鏡。本文將從PPC新聞稿出發,探討日本如何規範公部門使用DeepSeek。 壹、事件摘要 DeepSeek作為中國快速崛起之生成式AI服務,其使用範圍已快速在全球蔓延。然而,日本PPC發現該公司所公布之隱私政策,內容說明其所蒐集之資料將存儲於中國伺服器內,並依據中國《國家情報法》之適用範圍可能遭到中國政府調用或未經授權之存取。 日本PPC因而於2025年2月3日發布新聞稿,隨後日本數位廳於2月6日發函給各中央省廳,強調在尚未完成風險評估與資安審查之前,政府機關不應以任何形式將敏感資訊輸入DeepSeek,並建議所有業務使用應先諮詢內閣資安中心(内閣サイバーセキュリティセンター,NISC)與數位廳(デジタル庁)意見,才能判定可否導入該類工具[3]。數位大臣平將明亦在記者會中強調:「即使不是處理非機密資料,各機關也應充分考量風險,判斷是否可以使用。」(要機密情報を扱わない場合も、各省庁等でリスクを十分踏まえ、利用の可否を判断する)[4]。 本次事件成為日本對於生成式AI工具採取行政限制措施的首次案例,也引發公私部門對資料主權與跨境平台風險的新一輪討論。 貳、重點說明 一、日本對於人工智慧的治理模式 日本在人工智慧治理方面採取的是所謂的「軟法」(soft law)策略,也就是不依賴單一、強制性的法律來規範,而是以彈性、分散的方式,根據AI的實際應用場景與潛在風險,由相關機關分別負責,或透過部門之間協作因應。因此,針對DeepSeek的管理行動也不是由某一個政府部門單獨推動,而是透過跨部會協作完成的綜合性管控,例如: (一)PPC的警示性通知:PPC公開說明DeepSeek儲存架構與中國法規交錯風險,提醒政府機關與公務人員謹慎使用,避免洩漏資料。 (二)數位廳的行政指引:2025年2月6日,日本數位廳針對生成式AI的業務應用發布通知,明列三項原則:禁止涉密資料輸入、限制使用未明確審查之外部生成工具、導入前應諮詢資安機構。 (三)政策溝通與政治聲明:平將明大臣在記者會上多次強調DeepSeek雖未明列於法條中禁用,但其高風險屬性應視同「潛在危害工具」,需列入高敏感度審查項目。 二、日本的漸進式預防原則 對於DeepSeek的管制措施並未升高至法律層級,日本政府亦沒有一概禁止DeepSeek的使用,而是交由各機關獨自判斷[5]。這反映出了日本在AI治理上的「漸進式預防原則」:先以行政指引建構紅線,再視實際風險與民間回饋考慮是否立法禁用。這樣的作法既保留彈性,又讓官僚系統有所依循,避免「先開放、後收緊」所帶來的信任危機。 三、日本跟循國際趨勢 隨著生成式AI技術迅速普及,其影響已不再侷限於產業應用與商業創新,而是逐漸牽動國家資安、個資保護以及國際政治秩序。特別是生成式AI在資料存取、模型訓練來源及跨境資料流通上的高度不透明,使其成為國家安全與數位主權的新興挑戰。在這樣的背景下,各國對生成式AI工具的風險管理,也從原先聚焦於產業自律與技術規範,提升至涉及國安與外交戰略層面。 日本所採取的標準與國際趨勢相仿。例如韓國行政安全部與教育部也在同時宣布限制DeepSeek使用,歐盟、美國、澳洲等國亦有不同程度的封鎖、審查或政策勸導。日本雖然和美國皆採取「軟法」(soft law)的治理策略,然而,相較於美國以技術封鎖為主,日本因其地緣政治的考量,對於中國的生成式AI採取明確防範的態度,這一點與韓國近期禁止政府機構與學校使用中國AI工具、澳洲政府全面禁止政府設備安裝特定中國應用程式類似。 參、事件評析 這次日本政府對於DeepSeek的應對措施,反映出科技治理中的「資料主權問題」(data sovereignty):即一個國家是否有能力控制、保存與使用其管轄範圍內所生產的資料。尤其在跨境資料傳輸的背景下,一個國家是否能保障其資料不被外國企業或政府擅自使用、存取或監控,是資料主權的核心問題。 生成式AI不同於傳統AI,其運作依賴大規模訓練資料與即時伺服器連接,因此資料在輸入的瞬間可能已被收錄、轉存甚至交付第三方。日本因而對生成式AI建立「安全門檻」,要求跨境工具若未經審核,即不得進入政府資料處理流程。這樣的應對策略預示了未來國際數位政治的發展趨勢:生成式AI不只是科技商品,它已成為跨國治理與地緣競爭的核心工具。 中國通過的《國家情報法》賦予政府調閱私人企業資料的權力,使得中國境內所開發的生成式AI,儼然成為一種資訊戰略利器。若中國政府藉由DeepSeek滲透他國公部門,這將對國家安全構成潛在威脅。在此背景下,日本對公部門使用DeepSeek的管制,可被解讀為一種「數位防衛行為」,象徵著日本在數位主權議題上的前哨部署。 值得注意的是,日本在處理DeepSeek事件時,採取了「不立法限制、但公開警示」的方式來應對科技風險。此舉既避免激烈封鎖引發爭議,又對於資料的運用設下邊界。由於法令規範之制定曠日費時,為避免立法前可能產生之風險,日本先以軟性之限制與推廣手段以防止危害擴大。 台灣雖與日本同處地緣政治的敏感地帶,資料主權議題對社會影響深遠,為使我國可在尚未有立法規範之狀態下,參考日本所採之行政命令內控與公開說明外宣雙向並行之策略,對台灣或許是一種可行的借鏡模式。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]個人情報保護委員会,DeepSeekに関する情報提供,https://www.ppc.go.jp/news/careful_information/250203_alert_deepseek/ (最後瀏覽日:2025/05/06)。 [2]《中华人民共和国国家情报法》第7条第1项:「任何组织和公民都应当依法支持、协助和配合国家情报工作,保守所知悉的国家情报工作秘密。」 [3]デジタル社会推進会議幹事会事務局,DeepSeek等の生成AIの業務利用に関する注意喚起(事務連絡),https://www.digital.go.jp/assets/contents/node/basic_page/field_ref_resources/d2a5bbd2-ae8f-450c-adaa-33979181d26a/e7bfeba7/20250206_councils_social-promotion-executive_outline_01.pdf (最後瀏覽日:2025/05/06)。 [4]デジタル庁,平大臣記者会見(令和7年2月7日),https://www.digital.go.jp/speech/minister-250207-01 (最後瀏覽日:2025/05/06)。 [5]Plus Web3 media,日本政府、ディープシークを一律禁止せず 「各機関が可否を判断する」,https://plus-web3.com/media/500ds/?utm_source=chatgpt.com (最後瀏覽日:2025/05/06)。

FDA發佈人工智慧/機器學習行動計畫

  美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。   2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。   根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。

歐盟對其成員國、其他歐洲國家以及區域鄰國的創新績效進行比較分析並公布2017年歐洲創新計分板報告

  於2017年6月20日,歐盟對於歐盟成員國、其他歐洲國家以及區域鄰國的創新績效進行比較分析,並發布2017年度歐洲創新記分板(European Innovation Scoreboard, EIS)年度報告。它涵蓋歐盟成員國以及冰島、以色列、前南斯拉夫的馬其頓共和國、挪威、塞爾維亞、瑞士、土耳其和烏克蘭。在全球少數指標中,EIS也對澳大利亞、巴西、加拿大、中國、印度、日本、俄羅斯、南非、韓國及美國進行了評估。   EIS 2017排名與以前的版本不同,EIS 2017的測量框架由27個指標組成,區分4個主要類別的10個創新層面: 政策框架是創新績效的主要驅動力,涵蓋3個創新層面:人力資源、有吸引力的研究體系及創新環境。 投資包括公共及私人投資研究與創新,區分外部融資支持及內部資源投資。 創新活動吸取公司層面的創新工作,涵蓋3個方面:創新者、中間者及智慧財產權。 創新如何轉化為整體經濟效益之影響力:就業影響及銷售效應。   EIS顯示歐盟的創新績效繼續增長,特別是由於人力資源的改善、創新型環境、自有資源投資以及有吸引力的研究體系。而瑞典仍然是歐盟創新領導者,其次是丹麥、芬蘭、荷蘭、英國以及德國,創新指數比歐盟平均值高出百分之二十。立陶宛、馬爾他共和國、英國、荷蘭以及奧地利則是增長速度最快的創新者。在全球創新比較中,歐盟僅次於加拿大及美國,但韓國及日本正急起直追,而中國在國際競爭中是發展最快的國家。

TOP