美國FTC於2月23日對於兩款聲稱具有診斷能力的醫療app進行裁罰,理由是這兩款app宣傳不實資訊,故應予下架並裁處罰鍰。
Melapp與Mole Detective兩款app,均係付費app,售價大約在1.99至4.99美元不等,宣稱只要使用者從不同角度拍下自己身上的痣,app就能夠判斷這個痣屬於黑色素瘤(Melanoma,為一種罕見的皮膚癌類型,且惡性程度高)的機率,app將罹患黑色素瘤的風險區分為:高、中、低三級。但FTC認為業者的說法並沒有足夠的臨床依據加以證明,因此涉及廣告不實的行為。截至目前為止,Melapp與Mole Detective的開發業者都已經繳納罰鍰,但發行商L-Health拒絕繳納這項罰款,因此FTC的委員會在經過表決之後,決定在2015年2月23日向北伊利諾州地方法院提起訴訟,請求法院執行此項由FTC作成的裁罰。
具有診斷效果的app在美國其實開發已久,但在此案前,尚未見到行政機關對之積極的加以管制,此次由FTC出面對於廣告不實的部分加以裁罰,而非由主管藥物、醫材的FDA進行裁罰,或許與眾人的想像不同,但從FTC的這個行動,我們也發現美國政府已開始關切此類宣稱具有醫療診斷效果的app,醫療app未來的發展情勢將會如何,特別是本案中將被FTC起訴的L-Health會不會再另行提起其他法律爭訟,以確保其產品在市面上的合法性?毋寧是未來世界各地醫療app發展的重要參考資訊。
「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
德國放寬胚胎幹細胞之研究限制,允許進口2007年5月以前所製造的胚胎幹細胞進行研究在德國,由於納粹的醫學實驗歷史,人類胚胎研究一向是極為敏感的議題,並且為了研究用途摧毀胚胎也有極大的倫理爭議。德國下議院於2001年立法禁止從胚胎中粹取幹細胞後,在現行法規下幹細胞研究者只可以進口2002年1月1日以前製造的胚胎幹細胞供使用。不過在科學家一再表達只有極少量的細胞株可有效提供研究的關切下,德國下議院日前以346票對228票通過幹細胞法之修正,將截止日期(cut-off date)之規定由2002年1月1日,修正為2007年5月1日,藉此放寬對人類胚胎幹細胞研究的限制。 不過此次國會的修法仍引起支持與反對胚胎幹細胞研究人士的激烈爭論,支持一方表示現行截止日期的規定強烈影響德國幹細胞的研究,德國研究基金會(German Research Foundation)即強調目前全球有超過500個細胞株,但德國研究人員卻只被允許使用21個老舊且部分遭到污染的細胞株。另一方面,在德國主教的集會上,佛萊堡(Freiburg)大主教鄒立區(Robert Zollitsch)則對放寬現行限制提出警告,他表示「研究的自由不該與對生命的基本保障等量齊觀」。 修法後,德國研究人員將可透過國際合作進口使用2007年5月1日以前所製造的胚胎幹細胞。這是正反雙方妥協下的結果,但是德國對於限制胚胎幹細胞研究的基本立場是否會由此開始鬆動,則仍待後續觀察。
美國藥品CGMP規範關於製劑部分修正之觀察美國食品及藥物管理局(Food and Drug Administration,FDA)於2008年9月8日針對現行優良藥品製造作業規範(Current Good Manufacturing Practice In Manufacturing, Processing, Packing or Holding of Drugs,藥品CGMP規範)中關於製劑的部分,公布了最新修正規則,並在同年的12月8日正式實施,希冀藉此能與其它FDA規範(例如:品質系統規範﹙the Quality System Regulation, 21 CFR part 820﹚)和國際性的CGMP標準(例如:歐盟CGMP規範﹙the CGMPs of the European Union﹚)相調和。 本次修正係採漸進式,而非一次性的方式為之,主要針對無菌處理(aseptic processing)、石棉過濾裝置(asbestos filters)之使用、以及第二者驗證(verification by a second individual)等做修正。 首先,針對無菌處理部分,要求設備及器具必須清潔、保養,且視藥品的本質不同,予以消毒和(或)殺菌,以避免故障或污染。對於可能遭微生物污染致影響其預定用途之原料、藥品容器或封蓋,要求應於使用前經過微生物檢驗。此外,尚新增生物負荷量測試(bioburden testing)於管制程序的列表中,以保障每批藥品之均一及完整性。 其次,關於石棉過濾裝置之使用方面,回應一直以來所存在著將使用於生產液態注射劑產品(liquid injectable products)之過濾裝置規範更現代化的需求,本次修正明訂,於今後禁止使用石棉過濾裝置,同時,亦將石棉過濾裝置於非纖維釋出性過濾裝置的定義之中刪除。 最後,有關第二者驗證部分,因應生產過程逐步自動化的潮流,本次修正於原有規範下增設規定指出,如以自動化設備執行秤重、測量、分裝、產量計算、設備清潔與使用記錄、生產與管控紀錄等之工作,且符合相關條文要求,並有一人檢查該設備是否如預設正常運作,則視為合乎原有規範下須有一人操作另一人檢查之規定。亦即修正後之執行,只需一人加以確認該自動化設備是否適當運作即為已足,毋須就過程中的每一步驟加以檢視,避免多餘人力之浪費。 總括來說,本次修正確保法規確實涵蓋現行業界的操作實務,同時並確立FDA將藥品CGMP規範與以現代化,並與國際標準調和之目標,為以漸進方式修訂藥品CGMP規範跨出重要的一步。
澳洲發布《人工智慧臨床應用指引》提供臨床照護之人工智慧使用合規框架澳洲醫療安全與品質委員會(Australian Commission on Safety and Quality in Health Care, ACSQHC)與衛生、身心障礙及高齡照護部(Department of Health, Disability and Ageing)聯合於2025年8月發布《人工智慧臨床應用指引》(AI Clinical Use Guide),旨在協助醫療人員於臨床情境中安全、負責任使用人工智慧(Artificial Intelligence, AI)。該文件回應近年生成式AI與機器學習快速導入醫療現場,卻伴隨證據不足、風險升高的治理挑戰,試圖在促進創新與確保病人安全之間建立清楚的合規框架。 該指引以臨床流程為核心,將AI使用區分為「使用前、使用中、使用後」三個階段,強調醫療人員須理解AI工具的預期用途、證據基礎與風險限制,並對所有AI產出負最終專業責任。文件特別指出,當AI工具用於診斷、治療、預測或臨床決策支持時,可能構成醫療器材,須符合澳洲醫療用品管理管理局(Therapeutic Goods Administration, TGA)的相關法規要求。 在風險治理方面,該指引明確區分規則式AI、機器學習與生成式AI,指出後兩者因輸出不確定性、資料偏誤與自動化偏誤風險較高,臨床人員不得過度依賴系統建議,仍須以專業判斷為核心。同時,文件要求醫療機構建立AI治理與監督機制,持續監測效能、偏誤與病安事件,並於必要時通報TGA或隱私主管機關。 在病人權益與隱私保護方面,指引強調知情同意與透明揭露,醫療人員須向病人說明AI使用目的、潛在風險及替代方案,並遵循《1998年隱私法》(Privacy Act 1988)對個人健康資料儲存與跨境處理的限制。澳洲此次發布之臨床AI指引,展現以臨床責任為核心、結合法規遵循與風險管理的治理取向,為各國醫療體系導入AI提供具體且可操作的合規參考。 表1 人工智慧臨床應用指引合規流程 使用前 使用中 使用後 1.界定用途與風險。 2.檢視證據與合規。 3.完備治理與告知。 1.AI輔助決策。 2.即時審查修正。 3.維持溝通透明。 1.持續監測效能。 2.標示可追溯性。 3.通報與再評估。 資料來源:AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE [ACSQHC], AI Clinical Use Guide (2025).