營業秘密與競業禁止-簡評臺灣高等法院台南分院102年度上易字第212號判決

刊登期別
第26卷,第6期,2014年06月
 

※ 營業秘密與競業禁止-簡評臺灣高等法院台南分院102年度上易字第212號判決, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=6900&no=55&tp=1 (最後瀏覽日:2026/01/19)
引註此篇文章
你可能還會想看
英國Ofcom公佈電視廣告交易機制的反競爭調查報告

  英國Ofcom在2011年12月15日公佈了有關電視廣告交易機制是否有限制或扭曲市場競爭、最終傷害消費者的反競爭調查報告。最後認定並無明確證據顯示英國當前的電視廣告交易機制妨礙競爭,因此決定不依「2002年企業法」(Enterprise Act 2002)所賦予之權限,移送競爭委員會(Competition Commission)進一步調查。   雖然英國的電視廣告市場一年仍有40億英鎊的產值,但廣電業者的收益實已長期且穩定減少中,故Ofcom同年6月啟動本諮詢與調查,並從以下三個角度檢視電視廣告市場是否存在流弊,而使廣告價格高漲、廣告獲利配置不效率、阻礙廣電業者之創新與不利閱聽眾之經驗: 1、價格不透明:電視廣告市場長期以來因聯合報價、股權交易或各類折扣,導致價格不透明,使廣告買主可能無法進行有意義的比價。但Ofcom認為廣告公司皆屬老練業者,熟悉交易內容與約款;而廣告主則可透過閱聽眾的行為反應判斷廣告成效,且證據亦顯示廣告主經常替換廣告公司以獲得更好的交易條件。 2、 捆綁銷售時段:廣電業者可能運用市場力搭售離峰時段(off-peak airtime)。但證據顯示廣告買主尚可分別購買時段;而英國每月有250萬個廣告開口,強制分別交易將造成交易成本顯著上升。 3、交易模式僵化:雖然英國的電視廣告交易模式已20年不變,但科技進步使頻道數目大增,連帶使閱聽眾分化與廣告開口爆增,證據顯示廣告部門對此適應良好。 最後Ofcom認為在有害競爭證據不明顯,且進一步調查會產生更多成本的情況下,決定仍維持商業機制,不介入管制電視廣告市場。

日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標

  日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。   新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。   新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。

新加坡金融管理局發布《資料治理與管理實務》資訊文件

新加坡金融管理局(Monetary Authority of Singapore,下文簡稱MAS)於2024年5月29日發布《資料治理與管理實務》(Data Governance and Management Practices: Observations and Supervisory Expectations From Thematic Inspections)文件。此文件係根據MAS於2022年至2023年期間針對國內系統性重要銀行(Domestic Systemically Important Banks,下文簡稱D-SIBs)進行「資料治理與管理架構」的主題式檢查結果加以研究與分析而作成,其內容包含MAS對於資料治理的期望、受檢銀行的優良實踐範例及缺失,希望未參與檢查的銀行與金融機構也能根據這份文件進行適當的改善措施。 MAS在《資料治理與管理實務》文件中提出關於五大主題的監管期待,簡要說明如下: 1.董事會和高階管理層的監督: 董事會和高階管理層應加強監督資料治理。例如,定期向董事會報告資料管理領域的重要問題;高階管理層應即時獲得準確且完整的相關資訊,並對資料風險進行分析。 2.設置資料管理單位: 銀行應建立資料管理單位,並為資料管理辦公室提供明確的任務授權,以利其監測資料的品質。 3.資料品質之管理與控制: 銀行應建立資料品質管理架構與流程,以確保資料在整個生命週期中是有品質的。例如,建立有效控制資料流的機制;建立資料品質指標或計分卡;使用終端使用者運算工具(end-user computing tools)處理資料時,應納入風險評估和控制架構來管理。 4.資料品質控制資料之問題識別與升級: 銀行應制定升級標準和行動計畫,以改善資料品質。另外MAS也建議銀行應該要有強大且完整的資料譜系(data lineage)來辨識資料問題並將之改善。 5.BCBS 239原則之擴大適用:BCBS 239原則係巴賽爾銀行監理委員會(the Basel Committee on Banking Supervision)第239號規範:《有效風險資料聚合及風險報告原則》(Principles for effective risk data aggregation and risk reporting),適用於全球的系統性重要銀行(Global Systemically Important Banks),巴賽爾銀行監理委員會同時建議D-SIBs宜遵循此原則,因此MAS亦要求新加坡境內7家D-SIBs須遵守BCBS 239原則的相關規範。此外,MAS仍期待各銀行與金融機構可以擴大BCBS 239原則的適用範圍,例如在範圍內報告(in-scope reports,或稱主要風險報告)中納入反洗錢、稅務管理等面向。由於金融服務是一個由資料驅動的產業,資料已然是金融業重要的戰略資產。MAS期盼這份文件能夠讓所有銀行及金融機構提升其資料治理能力,並針對內部的問題進行改善。

美國商務部、財政部以及司法部發布遵循美國出口管制與制裁規範聯合指引

美國商務部(Department of Commerce)、財政部(Department of Treasury)以及司法部(Department of Justice)於2024年3月6日發布出口管制與制裁法令遵循指引,以避免邪惡政權(malign regimes)與其他不法人士試圖濫用商業與金融管道,取得有危害美國國家安全與外交政策利益、全球和平與繁榮風險的貨品、技術以及服務,特別提供「非美國公司」(non-U.S. companies),降低相關風險的遵循指引。 該指引分享3則違反制裁法規的案例,重點如下: (1)某家總部位於澳洲的國際貨運代理和物流公司,運送貨品至北韓、伊朗以及敘利亞(皆為被制裁之目的地),且透過美國金融系統發起或收受交易款項,導致美國金融機構與被制裁之對象交易,並向受制裁的司法管轄區輸出金融服務。該公司最終繳納6,131,855美元罰款。 (2)某阿聯酋公司與杜拜以及伊朗公司共謀,透過在出口文件中將一家杜拜公司錯誤地列為最終使用人,然後從一家美國公司出口「儲槽清洗裝置」(storage tank cleaning units)到伊朗,構成違反出口管制規定行為。後與主管機關達成行政和解,繳納415,695美元罰款。 (3)某家總部位於瑞典的國際金融機構的子公司,因其客戶從被制裁的司法管轄區的IP位址,使用子公司的網路銀行平台,透過美國代理銀行向位於被制裁司法管轄區的交易對象付款,因此繳納3,430,900美元罰款。

TOP