繼YouTube對美國總統大選的影響力逐漸受到各界矚目後,大西洋彼岸的歐盟執行委員會(European Commission),也漸體認到影音分享網站在商業應用外,對言論傳播乃至於政治活動之潛在影響。 有鑑於此,歐盟執行委員會甫於上月二十九日,於YouTube網站上增置一個名為 “EU Tube” 的視聽頻道,以做為歐盟(European Union)官方和歐洲公民間的溝通渠道。 關於此種利用線上影音分享網站作為政府資訊傳播和政策公開宣傳的創舉,有幾點值得國內注意。 首先,此一歐盟執行委員會與YouTube簽訂的頻道協議,乃是非專屬的協定。換言之,歐盟執行委員會仍可同時與其他網站或媒體簽訂類似之服務協議。其次,EU Tube之內容亦不僅限於硬性的政策或行動討論,而包含了從氣候變遷、能源議題到移民等各種公民相關事項,甚至有內容大膽的 ”Film Lovers Will Love This!” 的前衛影片。更有甚之,使用者對於不同影音檔點擊觀看次數(有數百萬人次與僅一千人次的差異)的資訊,也可作為日後進一步分析利用的原始資料。不過,雖然歐盟極力推動其內部之語言多樣性,目前既有的影片仍以英文為主。 歐盟發言人強調,納入YouTube等網站為對外溝通管道的作法,是為了盡可能擴大與歐盟公民的聯繫,但主要仍以易受YouTube吸引的年輕人為主。由此可見,網路網路對不同年齡層、世代的影響仍有差異,而公領域與影音分享網站日漸深化的關係,也考驗傳統媒體和政治互動的準則。
大陸專利申請數量超越美日 成世界第一根據世界智慧財產組織(World Intellectual Property Organization, WIPO)2012年12月發布的報告,中國大陸的專利申請數量於2011年首度超越美國,成為全球最大的專利申請國。這個頭銜在過去的一百年間,只有德國、日本和美國擁有過。 中國國家知識產權局是目前全球最大的專利(商標)局,其所受理的專利、實用新型專利、設計專利以及商標申請數量繼2010年超越日本後,於2011年更進一步達到52.6萬件,超越美國的50.4萬件成為全球第一。事實上,中國大陸商標的申請數量自2001年起就已是全球首位,而設計專利更早在1999年就達到此紀錄。WIPO的理事長Francis Gurry表示,雖然僅比較各國專利申請數量的多寡並不代表一切,然而這個數據仍某種程度的顯示了創新板塊移轉的趨勢。 WIPO報告指出,2009年至2011年,全世界的專利申請數量增加了29.4萬件,其中中國知識產權局占全球成長的比重達72%;且2011年全球的專利申請總數達到214萬件,首度突破二百萬大關,相較於2010年成長了7.8%,是連續第二年成長率高於7%。這些數據顯示出儘管近年經濟低迷,全世界在智慧財產權的申請數量上仍呈現高度穩定的成長。 該報告亦指出,2011年中國大陸根據「專利合作條約」(Patent Cooperation Treaty, PCT)所提出的國際專利申請總數排名第四,僅次於美國、日本以及德國,計有1萬6000餘件,較2010年成長33.4%,是全球增長最快的國家。其中,中國的中興通訊(ZTE Corporation)以2826件專利申請,超過日本松下榮登全球公司專利申請量榜首;華為(Huawei Technologies Co., LTD)則以1831件排名第三。
「智慧財產報告書」:開啟企業與市場之間的對話工具 合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。