美國監管醫療用基因檢驗之法制與實務趨勢 資訊工業策進會科技法律研究所 2020年03月25日 壹、事件摘要 精準醫療多搭配基因檢驗技術的研發與應用,以幫助醫師針對個體提供精確的診斷及治療服務。以美國現況而言,許多新的醫學檢驗技術在各實驗室中研發,且迅速發展至臨床應用,但必須經過醫療器材上市許可後,始得於實驗室外運用。 美國國會於1976年修正《聯邦食品藥物與化妝法(Federal Food, Drug, and Cosmetic Act)》後,將「體外診斷醫療器材」納入醫療器材的規範,同年美國食品藥物管理署(Food and Drug Administration, FDA)便宣佈對實驗室自行研發之檢驗技術(Laboratory Developed Tests, LDTs)行使「自由裁量權」(Enforcement Discretion),排除於《聯邦食品藥物與化妝法》的管理之外,讓實驗室內LDTs的應用可享較為寬鬆的空間[1] 。 換句話說,由於典型之LDTs僅為實驗室內部使用,且測試方式簡易,需求量亦不高,可由「醫療保險與醫療補助服務中心」(The Center for Medicare & Medicaid service, CMS)依據《臨床實驗室改進修正案(Clinical Laboratory Improvement Amendments, CLIA)[2]》之規範,施行臨床實驗室的品質管理。臨床實驗室於通過CLIA認證後,即可將開發的LDTs進行臨床應用。 然而,1976年迄今,LDTs的發展已經有許多的變化,運作LDTs的實驗室往往獨立於醫療服務機構(Healthcare Delivery Entity)之外,而依賴於許多高科技的儀器、軟體來產生結果及解釋,增加了許多以往沒有的風險;其商業模式也已經大幅的改變,已經大量製造、用於直接的臨床診斷決策上[3]。因此,美國FDA認為有必要引進一個全面性的監管架構管理LDTs,而非像過去一樣,將其排除於《聯邦食品藥物與化妝法》的管理之外。 貳、重點說明 FDA近年來加強基因檢驗風險監管之具體行動,包括LDTs監管架構之研擬以及加強實務取締,以保障病人的權益。 一、LDTs監管架構指引草案 美國FDA曾於2014年公布兩項指導文件,分別為「實驗室自行研發檢驗方法監管架構指引草案[4]」以及「實驗室自行研發檢驗技術須執行通知上市與不良事件通報之草案[5]」(以下統稱LDTs監管架構指引草案)。LDTs監管架構指引草案希望提升LDTs的規管密度,並規劃將LDTs分為數個不同的類別,依據其風險程度的高低,分別要求其進行包含取得上市前許可、符合品質系統規範等不同程度之要求。 該指引草案公布後,受到各臨床實驗室、醫療單位、病人與傳統體外診斷試劑製造商、政府部門等熱烈討論。特別是業界擔憂監管密度的提高,會扼殺臨床實驗室的創新意願,使得實驗檢驗技術、方法與應用停滯,並耗費大量的人力與金錢成本。 美國FDA最後於2017年1月13日說明,短期內不會執行該指引草案內容,但會尋求更加全面的立法解決方案[6]。歸納各界對指引草案之看法,顯示對LDTs的額外監督是必要的,但對於如何監管則有不同看法,未來主管機關應基於下列原則,提出符合科學證據、經濟效益並兼顧臨床安全性之管理方案,重點摘述如下: (一)以風險等級為基礎,並分階段實施監督 之後的四年內將分階段要求LDTs逐步進行上市前審查,第一年實驗室必須回報LDTs所有的嚴重不良反應;第二年將要求與第三級高風險醫療器材具有相同用途的新型或改良LDTs,必須經過一致的上市前審查;第三年要求與第二級中風險醫療器材具有相同用途的新型或改良LDTs,必須經過一致的510(k)上市前通知;第四年則完成LDTs全面性的監督,並且原則上與醫療器材採取一致標準。 (二)以檢驗之分析效能與臨床有效性,作為核准基礎 目前CMS已有實驗室檢驗之臨床效用(clinical utility)審查,但與FDA上市前審查所需之分析效能與臨床有效性有所差異。是故,FDA將制定適合的審查標準,以減輕實驗室提交審查的負擔,並加速上市前審查的審核時間。 (三)不良反應通報系統 將參考既有醫療器材上市後監督機制(postmarket surveillance),監控LDTs在真實世界的效能及臨床結果(real-world performance and clinical outcomes)。 (四)健全實驗室之品質系統 FDA將會密切與CMS合作加強實驗室的品質系統要求,但會與既有CLIA等認證制度相互調和、不會重複監督。 (五)公開檢驗性能資訊供大眾取得 實驗室必須將LDTs檢驗的分析效度及臨床有效性等相關資訊,公開讓民眾可取得。 (六)免除特定類型檢驗之上市前審查 對於特定類型的LDTs可免除上市前審查、品質系統及註冊登記之義務,如:對健康影響較低者、罕見疾病使用之LDTs等。 二、加強基因檢驗之執法 (一)23 and Me遺傳健康風險個人基因體服務 雖然在LDTs規範上,美國FDA暫時未有全盤性的改變;但在個案上,開始有逐步的調整。美國FDA在2013年11月時,發函警告生技公司「23 and Me」,認為其銷售的「個人基因體服務」(personal genome service, PGS)應該屬於《聯邦食品藥物與化妝法》所規定的第三級醫療器材(風險程度最高的醫療器材),但由於其未取得美國FDA的上市前許可,因此應該立刻停售;其後,23 and Me將其旗下的「遺傳健康風險個人基因體服務」(PGS Genetic Health Risk)向美國FDA申請並取得第二級醫療器材許可[7]。 (二)Inova藥物反應基因檢驗 2019年另外一起案例,亦顯示美國FDA從嚴限制LDTs在實驗室外應用之決心。美國FDA於2019年4月4日向Inova基因體實驗室(Inova Genomics Laboratory)寄發通知函,表示其自行研發之MediMap Plus基因檢驗產品,用於預測病人對藥品的反應與接收度,必須先完成FDA上市前審查程序,始得進行商業販售[8]。 Inova基因體實驗室雖回覆表示,MediMap Plus基因檢驗產品屬於LDTs的範疇,所以不應該受到FDA上市前審查或任何標示要求之拘束。嗣後,FDA則直接寄發警告函,申明其並未針對LDTs創設任何責任免除條款,且為了促進公眾安全,FDA對於LDTs保留裁量權[9]。對於FDA的警告,Inova決定停止執行MediMap Plus之販售,也不會申請上市前審查[10]。 三、小結 由於基因檢驗之安全及確效涉及面向十分廣泛,美國監管體系主要係以《聯邦食品藥物與化妝法》之醫療器材規範,搭配行之多年的CLIA實驗室品質管理制度,以完備各環節之風險管理。申言之,即便基因檢驗技術僅屬實驗室內應用,並未在外流通,亦屬實驗室品質管理之範疇,必須依據CLIA實驗室分類進行能力測試或實地查核。 其次,美國對於LDTs的監管雖然認為不宜貿然與醫療器材規範一致,但未來仍將參考醫療器材的風險等級基礎,並盡量提高審查的效率,此趨勢與歐盟新的醫療器材法規[11]一致。 參、事件評析 我國近年來政府與民間在基因檢驗的監管上亦有所討論,特別是LDTs之管理方向、管制密度之取捨、實驗室品質標準等[12]。從美國醫療用基因檢驗監管趨勢觀之,建議我國未來或可釐清不同目的之基因檢驗,如商業用、實驗用、醫療用等,進而明確醫療用基因檢驗之監管密度,並依不同風險程度採取分級監理,以在新技術應用與病人權益保護之間取得平衡。 [1]Center for Devices and Radiological Health, Food and Drug Administration, Draft Guidance for Industry, Food and Drug Administration Staff, and Clinical Laboratories: Framework for Regulatory Oversight of Laboratory Developed Tests (LDTs), Oct. 03, 2014, https://www.fda.gov/media/89841/download (last visited Jan. 07, 2020), at 6-7. [2]42 USC 263a, available at https://www.govinfo.gov/content/pkg/USCODE-2011-title42/pdf/USCODE-2011-title42-chap6A-subchapII-partF-subpart2-sec263a.pdf (last visited Dec. 26, 2019). [3]呂雅情,〈實驗室自行研發檢驗技術(LDTs)的發展與法規管理現況〉,當代醫藥法規月刊,2018/02/09,https://www.cde.org.tw/Content/Files/Knowledge/cc18e890-c1e3-4e6e-8bbd-45d7afd6cee9.pdf(最後瀏覽日:2020/01/07),頁17。 [4]Supra note 1, at 7-8. [5]id. at 30. [6]Food and Drug Administration, Discussion Paper on Laboratory Developed Tests (LDTs), Jan. 13, 2017, https://www.fda.gov/media/102367/download (last visited Jan. 07, 2020), at 1. [7]何建志,〈精準醫學趨勢下基因檢驗與消費者保護法律問題〉,《月旦醫事法報告》,第25期,頁44-45(2018)。 [8]Food and Drug Administration, Inova Genomics Laboratory, Apr. 04, 2019, https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/warning-letters/inova-genomics-laboratory-577422-04042019 (last visited Dec. 19, 2019). [9]Food and Drug Administration, Laboratory Developed Tests, Sep. 27, 2018, https://www.fda.gov/medical-devices/vitro-diagnostics/laboratory-developed-tests?fbclid=IwAR3gOzax6O0eUx67IpZBNpmvPrW6ynuP0P99Dlt4AGKZtxvwGSoYOx5EmFA (last visited Dec. 19, 2019). [10]GenomeWeb, Inova Decides to End PGx Test Offerings in Response to FDA Warning Letter, Apr. 15, 2019, https://www.genomeweb.com/regulatory-news/inova-decides-end-pgx-test-offerings-response-fda-warning-letter#.XNkp0hQzbIU (last visited Dec. 19, 2019). [11]歐盟2017年5月25正式生效新版醫療器材法規(Medical Devices Regulations, MDR; Regulation (EU) 2017/745)以及體外診斷醫療器材法規(In Vitro Diagnostic Devices Regulations, IVDR;Regulation (EU) 2017/746)。 [12]蔡雅雯、林工凱、黃品欽、謝文祥,〈基因檢驗法規監管方向初探〉,《台灣醫界》,第62卷第12期,2019/12,https://www.tma.tw/ltk/108621207.pdf(最後瀏覽日:2020/02/06)。
美國勞工部發布「人工智慧及勞工福祉:開發人員與雇主的原則暨最佳實務」文件,要為雇主和員工創造雙贏.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國勞工部(Department of Labor)於2024年10月發布「人工智慧及勞工福祉:開發人員與雇主的原則暨最佳實務」(Artificial Intelligence and Worker Well-Being: Principles and Best Practices for Developers and Employers)參考文件(下稱本文件)。本文件係勞工部回應拜登總統2023年在其《AI安全行政命令》(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)中對勞工的承諾,作為行政命令中承諾的一部分,本文件為開發人員和雇主制定如何利用人工智慧技術開展業務的路線圖,同時確保勞工可從人工智慧創造的新機會中受益,並免受其潛在危害。 本文件以八項AI原則為基礎,提出最佳實踐作法,其重點如下。 1. 賦予勞工參與權(empowering workers):開發人員和雇主履行各項原則時,應該秉持「賦予勞工參與權」的精神,並且將勞工的經驗與意見納入AI系統整個生命週期各環節的活動中。 2. 以合乎倫理的方式開發AI系統:開發人員應為AI系統建立標準,以利進行AI系統影響評估與稽核,保護勞工安全及權益,確保AI系統性能符合預期。 3. 建立AI治理和人類監督:組織應有明確的治理計畫,包括對AI系統的人類監督機制與定期評估流程。 4. 確保AI使用透明:雇主應事先告知員工或求職者關於AI系統之使用、使用目的及可能影響。雇主及開發人員應共同確保以清晰易懂的方式公開說明AI系統將如何蒐集、儲存及使用勞工的個資。 5. 保護勞工和就業權利:雇主使用AI系統時,除應保障其健康與安全外,不得侵犯或損害勞工的組織權、法定工資和工時等權利。 6. 使用AI以提升勞工技能(Enable Workers):雇主應先了解AI系統如何協助勞工提高工作品質、所需技能、工作機會和風險,再決定採用AI系統。 7. 支援受AI影響的勞工:雇主應為受AI影響的勞工提供AI技能和其他職能培訓,必要時應提供組織內的其它工作機會。 8. 負責任使用勞工個資:開發人員和雇主應盡責保護和處理AI系統所蒐集、使用的勞工個資。
FinCEN發布「防制洗錢與打擊資助恐怖主義優先事項」,以因應各種新興威脅隨著犯罪集團洗錢管道與手法日新月異,嚴重威脅金融秩序與經濟發展,美國財政部金融犯罪執法網(Financial Crimes Enforcement Network, FinCEN)於2021年6月30日發布防制洗錢與打擊資助恐怖主義(anti-money laundering and countering the financing of terrorism, AML/CFT)政策的優先事項(Priorities),目的係為了應對日益猖獗之洗錢犯罪行為,幫助金融機構評估其風險,並調整其防制洗錢計畫和資源運用優先順序,以提升國家AML/CFT政策效率與有效性。 依據發布內容,優先事項包括:(1)貪汙;(2)網路安全與虛擬貨幣相關之網路犯罪;(3)國內外資助恐怖分子;(4)詐欺;(5)跨國犯罪組織活動;(6)毒品販運組織活動;(7)人口販運與人口走私(human trafficking and human smuggling);(8)資助大規模毀滅性武器擴散(proliferation financing),反映了美國國家安全與全球金融體系長期以來存在之威脅,並將虛擬貨幣用於洗錢、資助恐怖主義,及支付勒索軟體攻擊贖金等納入防制洗錢範疇,防止虛擬貨幣成為洗錢管道。 FinCEN預計於2021年底前提出實施辦法,並根據美國防制洗錢法(Anti-Money Laundering Act)之要求,至少每4年更新一次優先事項,以因應美國金融體系與國家安全面臨的各種新興威脅。
新加坡資料共享法制環境建構簡介新加坡資料共享法制環境建構簡介 資訊工業策進會科技法律研究所 2019年12月31日 壹、事件摘要 如何有效運用資料創造最大效益為數位經濟(Digital Economy)重點,其中資料共享(data sharing)是有效方法之一。新加坡自2018年以來推動「資料共享安排」機制(Data Sharing Arrangements, 下稱DSAs)與「可信任資料共享框架」(Trusted Data Sharing Framework),建構資料共享環境,帶動國內組織[1]資料經濟發展與競爭力。 貳、重點說明 自從2014年新加坡政府推行「2025智慧國家(Smart Nation)」以來,即積極鋪設國家數位經濟建設,大數據資料分析等數位科技發展為其重點,預估2022年60%國內生產總值將與數位經濟有關[2] 。其中,希望透過資料共享促進組織、政府、個人三方間資料無障礙流通,降低蒐集、處理與利用成本,創造更多合作機會進行創新應用,因此從法制面、環境面與技術應用層面打造完善的資料共享生態系統(data sharing ecosystem)[3]。 然而依據《個人資料保護法》(Personal Data Protection Act 2012,下稱個資法)第14條以下規定,組織蒐集、處理與利用個人資料應取得當事人同意,除非符合第17條研究目的等例外情形。由於資料共享強調可將資料進行多節點快速傳遞近用,使資料利用價值最大化,因此若依據個資法規定每次共享皆須事前獲得當事人同意,將使近用成本增高並間接造成資料流通產生障礙。因此為因應國家政策與產業需求,新加坡個人資料保護委員會(Personal Data Protection Commission, 下稱個資委員會)依據個資法第62條所賦予的豁免權(exemption),個人或組織可在遵循個資委員會訂定的規則下,依照個案給予組織免除個資法部分規範[4] ,而DSAs機制即是一種[5]。 DSAs是由個資委員會於2018年設立的沙盒(sandbox)計畫,如組織所進行的共享模式是在特定群體並範圍具體明確,同時不會造成個人有負面影響等情事,可在不須經個人同意下進行資料共享[6]。並且,為進一步提升組織與消費者間信任,2019年6月個資委員會與資訊通信媒體發展局(Info-Communication Media Development Authority of Singapore,下稱資通發展局)共同推出「可信任資料共享框架」指南建議,由政府擔任監管角色,組織只要符合指南建議方向,如遵循法律、達到一定資料技術應用品質與實施資安與個資保護措施下,可以進行個人與商業資料之共享,DSAs機制是共享方法之一。以下簡述新加坡個資法規範、指南建議與DSAs機制運作方式。 圖1:資料共享環境建構 資料來源:新加坡資通發展局 一、新加坡個人資料保護法規範 在沒有個資法第17條所列之例外情形下,依據第14條以下規定,組織如近用個人資料應獲得個人同意,同時應符合目的使用及通知義務,尤其應給予個人可隨時撤回同意之權利[7]。 同時組織應根據個人要求,提供近用個人資料之方法、範圍與內容,以及更正錯誤資料權利[8]。並且組織必須任命資料保護官(Data Protection Officer, DPO)隨時向大眾提供通暢的個資聯絡管道,來確保個資透明性與完整性[9]。 在資料保護措施上應有合理安全的資安防護技術,以保障資料不被未經授權近用的風險。當使用目的不在時,需妥善保留或予以去識別化,同時如須境外轉移資料時,境外之資料保護措施應至少與新加坡個資法規範標準相同[10]。 二、免除同意之DSAs機制 DSAs機制是由個資委員會於2018年設立的沙盒(sandbox)計畫,也就是組織可透過申請免除資料共享前必須獲得個人同意之規範。然而如組織擬向個資委員會申請DSAs機制,必須符合三個條件[11]: 共享範圍需在特定群體、期間與組織內:即只限定在具體特定的應用情境內,若超出申請範圍,例如分享至其他非申請範圍的組織,則須再經過個資委員會批准[12]。 近用目的需具體明確:即資料共享必須應用於特定且明確目的,如以「社會研究目的」作為申請則範圍過大不夠明確[13]。 近用資料對於個人不會有不利影響,或公共利益大於個人利益:例如共享目的不是直接用於銷售或存在合法利益,或是共享本身具備公共利益且明顯大於個人可預見的(foreseeable)不利影響,此時個資委員會可考慮同意組織申請免除[14]。 三、建立以信任為基礎之資料共享模式 雖然取得DSAs機制免除同意可以使資料近用方式更為簡便,然而在進行資料共享前,仍應有完善的技術品質與資安保護措施,因此在「可信任資料共享框架」指南建議中,組織應透過法律遵循、導入AI或區塊鏈等新興技術,並具備相應資安保護措施來建構可信任的資料共享環境,實際步驟可分為以下四階段[15]: 圖2:可信任資料框架 資料來源:新加坡資通發展局 第一階段為「資料共享建構」[16],由組織自行評估存有的商業或個人資料是否具共享價值與潛在利益,並要如何進行共享,例如資料共享方式屬於雙邊(bilateral)、多邊(multilateral)或是分散式(decentralized,又稱「去中心化」)。以及資料種類有哪些,如主資料(master data)、交易資料、元資料(metadata)、非結構化資料(unstructured data)等。組織可將資料共享方式、種類依據無形資產(intangible asset)評價方式,即市場法(market approach)、成本法(cost approach)與收入法(income approach)三種評價方法進行評價,來衡量共享之價值性。除資料價值判斷外,組織必須自行評估自身組織與將來之合作夥伴是否有足夠能力管控共享之資料,包括是否具備一定技術能力的資安與資料保護措施等。 第二階段為「法律規範考量」[17],即決定哪些資料可以進行共享,從規範面檢視個資法、競爭法與銀行法等是否有例外不得共享規定,例如信用卡號碼或個人生物識別資訊不得共享。若資料共享類型不會對個人造成不利影響或具備公共利益,並有通知(notification)個人給予選擇退出(opt-out)的機會,組織可依個案申請DSAs機制之豁免。同時另外鼓勵組織向IMDA申請資料保護信任標章(Data Protection Trustmark, DPTM)認證,透過認證機制使消費者更能信任組織運用其個人資料[18]。 第三階段為「技術組織考量」[19],包含組織是否有能力建立資安風險管理與個資侵害之因應措施,是否有即時將資料安全備份技術,並針對不同傳輸技術如有線/無線網路、遠端存取(VPN)、應用程式介面(API)、區塊鏈等區分不同資安防護與風險管理能力。 最後一階段為「資料共享操作」,當已準備進行資料共享時,需再次檢視是否已符合前三個階段,包含透明性、責任義務、法律遵循、近用資料方式與取得目的外利用同意等[20]。 參、事件評析 個人資料視為21世紀驅動創新的重要價值,我國部會亦開始討論「個資資產化」的可能[21]。面對數位經濟時代來臨,有效運用數位科技將潛藏個人資料的大數據進行加值利用,不僅有利組織與創新發展,更可回饋消費者享有更好的產品與服務。 新加坡政府以資料共享作為數位經濟發展重點方向之一,在具備一定程度技術能力、資安保護措施與組織控管之條件下,可向主管機關申請免除個人同意之規範。透過一定法規鬆綁讓資料利用最大化以創造產業創新價值,同時依據主管機關要求的保護措施,使消費者信賴個人資料不會遭受不當利用或侵害。DSAs機制與「可信任資料共享框架」指南之建立,適時調適個人資料保護規範與資料應用間的衝突,並提供組織進行資料共享之依循建議,作為推動該國數位經濟發展方針之一。 [1]組織(organisation)依據新加坡個人資料保護法(Personal Data Protection Act 2012)第2條泛指個人、公司、協會、法人或團體。 [2]INFOCOMM MEDIA DEVELOPMENT AUTHORITY 【IMDA】, Trusted data sharing framework (2019), at 7, https://www.imda.gov.sg/-/media/Imda/Files/Programme/AI-Data-Innovation/Trusted-Data-Sharing-Framework.pdf (last visited Sep. 11, 2019). [3]id. [4]Personal Data Protection Act 2012 (No. 26 of 2012) §62, “The Commission may, with the approval of the Minister, by order published in the Gazette, exempt any person or organisation or any class of persons or organisations from all or any of the provisions of this Act, subject to such terms or conditions as may be specified in the order.” [5]Data Sharing Arrangements, PDPC, https://www.pdpc.gov.sg/Overview-of-PDPA/The-Legislation/Exemption-Requests/Data-Sharing-Arrangements (last visited Dec. 1, 2019). [6]id. [7]IMDA, supra note 2, at 31; Personal Data Protection Act 2012 (No. 26 of 2012) §14, 16, 20. [8]id. Personal Data Protection Act 2012 (No. 26 of 2012) §21. [9]IMDA, supra note 2, at 31. [10]id. at 32. Personal Data Protection Act 2012 (No. 26 of 2012) §24-26. [11]id. [12]PERSONAL DATA PROTECTION COMMISSION【PDPC】, Guide to Data Sharing (2018), at 14, https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Other-Guides/Guide-to-Data-Sharing-revised-26-Feb-2018.pdf (last revised Oct. 3, 2019). [13]id. [14]id. [15]PDPC, supra note 4. at 28. [16]id. at 21, 23-25. [17]id. at 35 [18]id. at 30. Data Protection Trustmark Certification, IMDA, https://www.imda.gov.sg/programme-listing/data-protection-trustmark-certification (last visited Sep. 26, 2019). [19]id. at 41-47. [20]id. at 50-51. [21]林于蘅,〈自己的個資自己賣!國發會擬推「個資資產化」〉,聯合新聞網,2019/06/17,https://udn.com/news/story/7238/3877400 (最後瀏覽日:2019/10/1)。