網路數位內容權利保護,牽涉各方角力

  iPod的成功,塑造了網路數位內容傳播的新商業模式,但對著作人權利保護團體來說,新科技與新產品對著作權人的權利會造成怎樣的影響,則是他們所高度關心的。


  目前,著作權權利團體包括「美國唱片協會」(RIAA)與「美國電影協會」(MPAA)正在美國推動一項立法,希望透過法律的規定,限制未來數位媒體接收設備的若干科技發展。依法案推動者目前的構想,任何設備如能對於從數位網路上接收或下載的數位內容做任意的修改,便可能構成違法。共和黨籍參議員史密斯(Senator Gordon Smith)已表明支持此項立法。


  此一立法運動,已引起各界高度的關注,包括科技廠商及民間組織在內,也表示質疑的態度。如何在保護著作權人權利與促進新科技發展之間,取得一個適當的平衡點,會是一個愈來愈重要的議題。

相關連結
※ 網路數位內容權利保護,牽涉各方角力, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=702&no=66&tp=1 (最後瀏覽日:2024/11/23)
引註此篇文章
你可能還會想看
日本電業節能義務之介紹

日本通過《減少食品損耗促進法》

  隨著地球人口增加,糧食問題日益嚴重,而土地資源有限及氣候變遷也影響著產量。除了開源—提升糧食產量之外,如何節流—減少糧食浪費,也成為各國重要課題。日本為因應聯合國永續發展目標(SDGs)中的具體目標12.3:「在2030年之前,達到減少生產供應鏈糧食損失,同時掌握消費端食物浪費流向。」並改善國內食物大量損耗的問題,參議院於2019年5月24日表決通過由跨黨派議員聯盟提出的《減少食品損耗促進法》(食品ロス削減推進法)。有鑑於日本的循環型社會法制體系中,已有以實現食品環保3R(Reduce, Reuse, Recycle)為目的之《食品循環利用法》(食品リサイクル法),《減少食品損耗促進法》要求中央及地方政府在依既有相關法規,實施食品廢棄物減量時,也應考量本法之目的和內容,適當地推行措施。   《減少食品損耗促進法》將「減少食品損耗」定義為:「防止仍能食用的食品不被廢棄之社會性措施。」並定義「食品」 係除《醫藥品、醫療機器等法》第2條第1項所稱之「藥品」、同條第2項所稱之「醫藥部外品」及同條第9項所稱之「再生醫療等製品」以外之飲品及食物。   依《減少食品損耗促進法》之規定,未來內閣府將設立名為「減少食品損耗促進會議」(食品ロス削減推進会議)之專責機關,制定減少食品損耗的基本方針,並審議相關重要事項及推動政策之實施,而地方政府也應努力制定具體的相關促進計畫。本法也鼓勵企業與中央和地方政府合作,積極減少食物廢棄物,同時希望消費者自主採取行動。「減少食品損耗」作為從食品的生產到消費各階段的重要目標, 將成為新的全民運動。

Apple Inc. 因販售個人資料面臨團體訴訟

  三位來自Massachusetts州的州民,以Apple Inc.(下稱Apple)為被告,於該州地方法院提起團體訴訟。其等主張在2012年至2013年間,透過信用卡於Massachusetts州Apple的零售商店購買該公司相關商品時,Apple有過度蒐集與不當利用個人資料之情形。據Apple網站指出,消費者得選擇透過信用卡的方式購買商品,然若選擇信用卡方式付費,必須提供個人相關識別訊息,包含完整的郵政編碼,如果提供不完整,Apple將不會允許使用消費者使用信用卡方式付費;且Apple亦在網站上聲稱保有允許提供該類訊息予提供產品和服務的合作夥伴,或得利用該類訊息幫助行銷的權利。故原告等透過信用卡消費後,收到不必要的市場行銷資訊;又Apple將原告等人可識別的個人資訊銷售第三方公司,並在未顧及原告等權益下,挪用了該具有經濟價值的個人可識別資訊。基於上述理由,原告等請求至少500萬元美金之損害賠償,其中不包含訴訟費用以及相關利息等其他費用。   依據Mass. Gen. Laws ch. 93 §105 規定,不論是個人、商號、合夥、公司或一切營業人,當接受信用卡交易模式時,並不能要求消費者填寫任何個人可識別的資訊。若法院同意原告們的訴求,Apple將因「不公平且欺騙之貿易行為」而被認定違反該州法律而必須負擔賠償責任,且Apple也將被要求停止蒐集全州的個人可識別資料。

IBM提出「人工智慧日常倫理」手冊作為研發人員指引

  隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability)   由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment)   人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability)   人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。   該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。

TOP