運作技術成熟度(Technology Readiness Level)進行技術評估
資策會科技法律研究所
法律研究員 羅育如
104年10月22日
壹、前言
為提升我國科技競爭力,於1999年制定科學技術基本法(以下簡稱科技基本法),透過科技基本法的規定,使原本歸屬國有財產之研發成果,得以下放歸屬執行單位所有,使大學對研發成果能有更完善應用之權利。
科技基本法實施之後,各研究單位開始學習國外經驗,積極進行產學合作,將內部之研發成果技術移轉與外部產業。但是,科技基本法實行已15年的今日,各界逐漸發現,政府經費之投入與研發成果產出之經濟效益有相當大的差距。例如科技部102年專題研究計畫補助經費為215億新台幣,但僅創造3.5億新台幣之衍生成果技術移轉權利金[1]。政府經費投入與產出不符預期的議題,牽涉多元層面問題,但是從新設立政府計畫案之目標與KPI,可以發現政府新創設之補助計畫開始以協助技術商業化作為主要目的,例如萌芽計畫、產學計畫等。
技術商業化操作模式會依據技術成熟度不同而有所差異,技術成熟度高的項目,廠商承接後所需要投入的研發成果可能較低,直接協助廠商改善生產流程或是成為產品商品化的機率較高;反之,廠商則需要投入較多的技術研發費用,需要花費較多的人力與資源,技術才有機會商品化。
由此可知,在技術商業化計畫推廣時,技術項目的技術成熟度是一個重要的評估關鍵。本文針對技術成熟度的評估指標詳細說明,以提供執行技術商業化計畫時,評估技術項目之參考。以下會分別說明何謂技術成熟度以及技術成熟度如何運用,最後會有結論與建議。
貳、技術成熟度說明
技術成熟度或稱為技術準備度(Technology Readiness Level;簡稱TRL)是美國太空總署(NASA)使用多年的技術評估方法,後來為美國國防部所用,再廣為國際各政府機構、學研單位、企業機構使用。
TRL是一個系統化的量尺/衡量指標,可以讓不同型態的技術有一致性的衡量標準,描述技術從萌芽狀態到成功應用於某項產品的完整流程[2]。而TRL涵蓋的技術研發流程則包括四個部分:(1)概念發展:新技術或是新概念的基礎研究,涵蓋TRL1~3;(2)原型驗證:特定技術針對一項或是多項潛在應用的技術開發,涵蓋TRL4與5;(3)系統開發:在某一應用尚未成為一整套系統之前的技術開發以及技術驗證,然後進行系統開發,涵蓋TRL6;(4)系統上市並運作[3],涵蓋TRL7~9。以下分別說明TRL每個衡量尺度的定義[4]。
TRL 1 基礎科學研究成果轉譯為應用研究。
TRL 2 為某項特殊技術、某項材料的特性等,找出潛在創新應用;此階段仍然是猜測或推論,並無實驗證據支持。
TRL 3 在適當的應用情境或載具下,實驗分析以驗證該技術或材料相關物理、化學、生物等特性,並證明潛在創新應用的可行性(proof-of-concept)。
TRL 4 接續可行性研究之後,該技術元素應整合成具體元件,並以合適的驗證程序證明能達成原先設定的創新應用目標。
TRL 5 關鍵技術元件與其他支援元件整合為完整的系統/系系統/模組,在模擬或接近真實的場域驗證。需大幅提高技術元件驗證的可信度。
TRL 6 代表性的模型/雛形系統在真實的場域測試。展示可信度的主要階段。
TRL 7 實際系統的雛形品在真實的場域測試。驅使執行TRL7的目的已超越了技術研發,而是為了確認系統工程及研發管理的自信。
TRL 8 實際系統在真實的場域測試,結果符合設定之要求。代表所有技術皆已整合在此實際系統。
TRL 9 實際系統在真實場域達成目標。
參、技術成熟度應用
技術成熟度可以單純拿來衡量技術開發階段、可用來衡量技術開發風險、也可作為研發機構角色以及補助計畫定位的參考,以下說明。
一.技術成熟度用來衡量技術開發階段
這是技術成熟度最單純的應用方法,但因為每種技術領域都可其特殊的技術開發脈絡,所以可以根據NASA原有的技術成熟度,修改成貼近該技術領域需求的技術成熟度指標。目前有看過軟硬體TRL指標、綠能&能源TRL指標、ICT TRL指標、生醫(新藥、生物製劑、醫材)TRL指標等[5]。
二、技術成熟度用來管理技術研發風險
研究開發需投入大量的人力、物力,而研究成果的不確定性又很高,所以需要有良好的技術研發管理。技術成熟度對技術研發管理而言,是風險的概念,一般而言,TRL階段與技術風險是反向關係,也就是說TRL階段越高,技術風險越低[6]。
需要考慮的面向包括[7] ,(1)現在技術成熟度在哪一階段?以及我們投入研發後,希望達到的技術成熟度目標為何?(2)從現在的技術成熟度到專案需要的技術成熟度,要精進這項技術到底有多難?(3)這項特定技術如果開發成功,對於全面技術目標而言的重要性如何?
三、機構角色以及補助計畫定位
TRL指標可用來明確區分研發機構角色定位,例如工研院內部運用TRL指標做為技術判斷量化評估指標,並且工研院需將技術成熟度提升到TRL6或7,以克服技術面的問題,進行小型試量產,才能跨越死亡之谷讓業界接手商業化[8]。
TRL指標也可以用來區分補助計畫的標的範圍,例如美國國防部傾向投資TRL 4階段技術,美國國防部培養TRL4以及4以下的技術到TRL6階段,使得這些技術能更順利的進入技術市場,其原因在於TRL程度越低,成功商品化的不確定性以及風險就越高,而TRL4階段技術項目,是美國國防部可以承受的風險程度[9]。
肆、結論
TRL指標現在已被廣泛的運用在技術評估工作上,透過量化的指標,協助研發人員或是技術管理人員方便掌握每個技術開發案的現況,例如現在技術在TRL哪個階段,技術開發結束後,TRL預計會到達哪個階段。確定目標之後,就可以進一步評估這個計畫開發案的風險並評估組織需投入的資源。
TRL是一個簡易的技術評估指標,但如果要以此做出全面性的技術策略,似乎就還是有所不足,因此,可以再搭配其他技術評估變項,發展為全面性的技術風險管理評估指標,可能可以搭配技術開發困難度指標,用以評估TRL往上提升一級的困難度程度[10],也可以搭配技術需求價值指標[11],這項技術順利成功的話,對整個系統開發而言的價值高低,價值非常高的話,就值得花更多資源與人力去投資。
由此可知,應該可以積極運用TRL指標,用來評估政府技術補助計畫,協助大學技轉辦公室管理各研發團隊之技術開發進程,也可提供技術移轉潛在廠商清楚設定技術規格,減低技術供給方與技術需求方之間的認知差異,進而提升技術移轉成功率,也就可以拉近政府經費投入與研發成果產出的差距。
[1] 行政院國家科學委員會,行政院國家科學委員會102年年報,頁24、98(2013),http://www.most.gov.tw/yearbook/102/bookfile/ch/index.html#98/z,最後瀏覽日2015/07/21。
[2] John C. Mankins, NASA, Technology Readiness Levels: A White Paper (1995).
[3] id.
[4] US DEPARTMENT OF DEFENSE (DoD), Technology Readiness Assessment (TRA) Guidance (2011), http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf (last visited July 22, 2015).
[5] Lewis Chen,<Technology Readiness Level>,工研院網站,http://www.sti.or.th/th/images/stories/files/(3)ITRI_TRL.pdf (最後瀏覽日:2015/07/22)。
[6] Ricardo Valerdi & Ron J. Kohl, An Approach to Technology Risk Management (2004), http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 22, 2015).
[7] John C. Mankins, Technology Readiness and Risk Assessments: A New Approach, ACTA ASTRONAUTICA, 65, 1213, 1208-1215 (2009).
[8] 邱家瑜、蔡誠中、陳禹傑、高皓禎、洪翊恩,<工研院董事長蔡清彥 以新創事業連結全球市場 開創屬於年輕人的大時代>,台灣玉山科技協會,http://www.mjtaiwan.org.tw/pages/?Ipg=1007&showPg=1325 (最後瀏覽日:2015/07/22)。
[9] Ricardo Valerdi & Ron J. Kohl, Massachusetts Institute of Technology, An Approach to Technology Risk Management, http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 21, 2015).
[10] 同註7。
[11] 同註7。
紐西蘭最為歷史悠久的IT專家組織(Institute of IT Professionals NZ)於2012年5月發布雲端運算實務準則(Cloud Computing Code of Practice),藉此彌補實務上缺乏雲端運算標準與實務指針的問題;本準則為自願性遵循規範,以紐西蘭為市場的外國雲端業者、及紐西蘭的業者皆可適用之,並可向公眾宣示其已遵行此準則,然倘若未遵行而為遵行之宣示,則屬誤導或詐欺行為而觸犯公平交易法(Fair Trading Act 1986)。本準則有四個主要目標:1. 促進紐西蘭雲端產業的服務標準;2. 確立應揭露(disclosure)的標準;3. 促進雲端服務提供者與用戶間就資料保護、隱私與主權等事項的揭示;4.強化紐西蘭雲端運算產業的整合性。 依據此準則,雲端業者的資訊揭露範圍至少應包含業者基本資料、資訊所有權、管理及保護、與服務提供之適當管理措施等。在資訊所有權層面,業者應表明是否對所上載的資料或資訊主張所有權;而當用戶透過雲端服務利用或傳輸的資料而儲存於其他上游業者的網路或系統時,業者應確認其資料所有權之歸屬。 在資料管理與保障層面,業者應表明遵從何種資訊安全標準或實務,其已向美國雲端產業聯盟(Cloud Security Alliance)進行STAR登記,或者已通過其他標準的驗證;此外應表明儲存資料伺服器之一處或多處所在地。再者,業者亦須表明服務關係繼續中或終止後,業者或客戶對於客戶所擁有資料之存取權限。 在服務提供的適當管理措施上,包含業者的備份(Backup)程序及維護措施,皆應為揭露,使用戶得據以評估是否採取進一步的資料保護措施;此外包括服務的繼續性要求,如備援措施…等,亦應為揭露;又鑒於雲端服務有地理多樣性(Geographic Diversity)的特質,業者應使用戶知悉其提供服務、或營業活動的地點,以判斷此等服務可能適用的法權(Legal Jurisdiction)。 依據此準則,雲端業者亦可例如透過服務水準協議(Service Level Agreement)對個別用戶承諾特別的服務支援方案,以提供更好的服務品質。
談我國基因改造生物田間試驗管理規範之現況與修正方向 英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議: (一)關於人工智慧及應用界定與發展 人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。 (二)未來對社會及政府利益及衝擊 人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。 目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。 在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。 (三)關於相關道德及法律風險管理課題 人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考: (1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。 (2)調適由人工智慧作決策行為時的歸責概念和機制。 有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。 針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。 人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。
歐盟推出給在中華區企業參考之網路犯罪與營業秘密保護指南歐盟執委會(European Commission)設有6區域中小企業智慧財產服務台(IP SME Helpdesk),其中歐洲智慧財產服務台(European IP Helpdesk)以及中華區小企業智慧財產服務台(China IP SME Helpdesk)於2022年9月聯合推出「網路犯罪與營業秘密保護指南」(Cybercrimes and trade secret protection : guide,下稱本指南),最大特色之處即在企業如何回應營業秘密遭網路竊取時之事後應對手段。 中華區中小企業智慧財產服務台透過提供免費資訊服務,支援歐盟(EU)中小企業(SME)在中國大陸、香港、澳門和臺灣保護和執行其智慧財產權(IPR),陸續發布如2020年「保護你在中華區的營業秘密」(Protecting your trade secrets in China)等一系列指導企業如何於中華區保護智財之指南。 本指南首先揭示企業營業秘密之事前保護手段,包括(1)技術手段:加強網路安全(加密資料、安裝防毒軟體、辨識雲端風險、制定網路安全策略)以及利用區塊鏈技術作為資料、證據保存的手段;(2)內外部人員管制手段:內部員工培訓與管理、第三方(市場、競爭對手)監控。而營業秘密遭竊之事後應對手段,包括(1)回應手段:確認資訊外洩原因、建立緊急處理機制(回報、蒐證流程)、採取法律步驟;(2)回復手段:控制損害(端視營業秘密是否被公開而有不同做法)、亡羊補牢(重新檢視企業智財布局、資安措施、緊急處理計畫),對於在中華區之企業,本指南作法具參考價值之外,資策會科法所發布之營業秘密管理指針2.0版亦可同步參考。 本文同步刊登於TIPS網站(https://www.tips.org.tw)