新興經濟體之創新創業機制特色初探

刊登期別
第27卷第09期,2015年09月
 

本文為「經濟部產業技術司科技專案成果」

※ 新興經濟體之創新創業機制特色初探, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7036&no=55&tp=1 (最後瀏覽日:2026/01/27)
引註此篇文章
你可能還會想看
歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題

  歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。   指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。   指引的主要內容包括:   個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。   禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。   GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。   工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。   對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。   「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。   工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。   在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。

日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營

日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

網路搜尋引擎龍頭Google 控告Microsoft剽竊搜尋結果

  網路搜尋引擎龍頭Google質疑Microsoft研發的“Bing”搜尋引擎有剽竊Google搜尋結果的狀況,對此Google已提出訴訟。Google表示,為了要調查是否有搜尋結果被剽竊的情形,故意在搜尋引擎中創造近100個毫無意義的搜尋關鍵字,例如“Hiybbprqag”、“Mbzrxpgiys”和“Indoswiftjobinproduction”等,同時對應該關鍵字插入虛假的搜尋結果。在幾個禮拜之後,Google發現競爭對手Microsoft 的Bing搜尋引擎也出現相同的搜尋結果,因此認為Bing有剽竊之疑。Google表示:「Google的搜尋結果是經過多年辛苦努力的成果,這件事情對我們來說像是一場馬拉松賽跑中有人在背後偷襲你,然後突然跳到終點站前迎接勝利,是一種欺騙的行為。」   Microsoft否認剽竊搜尋結果,認為這是Microsoft用來提高搜尋品質結果的方法之一,Bing實際上使用不同的符號和方法來對於不同的搜尋結果加以分級,用來辨別不同的搜尋結果。同時針對搜尋結果提供多數關連的答案,藉此增加消費者對於Bing搜尋引擎的良好經驗,Google使用間諜手法(Spy-novelesque stunt)對競爭對手進行調查,此舉已抹黑Bing,蒙上不好的評價。   Google提出抗辯認為Bing的行為構成簡單而顯然的詐欺,造成不同的搜尋引擎產生同樣的搜尋結果。況且搜尋引擎的功能,若可以出現與Google搜尋下相同的結果,並無法保證能創造出更好的搜尋品質,Microsoft的說法無法獲得肯認,後續延燒的訴訟爭議,有待日後進一步觀察。

歐盟決定開放800MHz供無線寬頻應用

  歐盟執委會於2010年5月6日公布790-862 MHz頻段(簡稱800MHz)的統一技術規格決定(Commission Decision 2010/267/EU on harmonised technical conditions of use in the 790-862 MHz frequency band for terrestrial systems capable of providing electronic communications services in the European Union)。會員國以為,與其單純保留800MHz給地面廣播系統使用,不如開放該頻段供網路使用,故會員國必須立即根據決定,以一致性的技術規格,讓800MHz頻段可以供無線寬頻接取技術使用。   執委會下一步將對數位紅利的使用提出規劃草案,草案內容並將成為預計於6月底公布的「2011-2015年無線頻譜政策方案」(Radio Spectrum Policy Programme 2011-2015)的一部份。各界預期,該草案有可能包括制訂一個所有會員國都必須釋出800MHz供寬頻服務發展的實施日期。

TOP