用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
歐洲資料保護監督官12月7日發表正式意見,針對歐盟執委會就AFSJ大型資訊技術系統設立作業管理機構之立法計畫,提出隱私保護法律要求歐洲資料保護監督官(European Data Protection Supervisor, EDPS)於2009年12月7日,針對歐盟執委會(European Commission)近年所提出關於設立歐盟「自由、安全及司法領域」(area of freedom, security and justice, AFSJ)大型資訊技術系統(IT System)作業管理機構之立法計畫,基於個人資料保護之立場提出正式法律意見。如此一立法計畫順利通過,該機構預計將擔負起包括「申根資訊系統」(Schengen Information System, SIS II)、「簽證資訊系統」(Visa Information System, VIS)、「歐洲指紋系統」(European Dactylographic System, Eurodac)及其他歐盟層級之大規模資訊技術系統之作業管理(operational management)任務。 根據EDPS首長Peter Hustinx表示,由於前述各項系統之資料庫中均包含諸如護照內容、簽證及指紋等大量敏感個人資料,因此儘管設立單一之作業管理機構,可以在相當程度上釐清歐盟各部門職責歸屬及準據法適用之問題,但如此一機構欲取得合法性,其活動範圍及相關責任即必須在立法中獲得明確界定,否則即可能產生個人資料濫用(misuse of personal data)及資料庫「功能潛變」(function creep)之風險。而基於此一分析,Hustinx認為目前執委會之機構立法計畫尚未符合個人資料保護要求。 此外,針對後續立法進程,EDPS建議除應確實釐清該管理機構之活動範圍是否包括整體AFSJ,亦或僅限於邊境檢查及難民與移民事務;執委會與該機構之關聯性與責任等重要問題外,是否可在缺乏相關經驗及實證評估下,即直接將所有歐盟層級之大型資訊技術系統與資料庫歸入該機構管轄,顯然亦有商榷餘地。EDPS就此認為,透過立法界定「大型資訊系統」之範圍,並且採取資料庫分次進入該管理機構責任範圍之方式,應係日後執委會可以努力之方向。
美國將針對匯流通訊服務下的網路中立概念進行檢視在數位匯流的發展下,設備與服務之應用更為多元化,越來越多電信服務使用者透過電信公司提供的無線網路,來使用網路電話服務,例如Skype、Google Voice等,以達到通話與簡訊收發的目的,也因此造成電信公司通話收益的下滑。為了因應這樣的情況,美國提供行動通話的電信公司,例如AT&T、Verizon等,都採取了若干行動來維護本身的利益,包括長期以遲延此類服務之封包為手段,阻礙網路電話之通訊效益,降低用戶的使用意願;之前AT&T專賣之iPhone手機,也被設定無法安裝Google Voice服務,限制用戶的使用方式,以降低網路電話服務對行動通信業者的衝擊。 有鑑於此類狀況將日漸增加,為了促進多元產業的良性競爭,近日美國聯邦通訊委員會(Federal Communication Commission, FCC)依據「網路中立」(Internet neutrality)的法理原則,針對AT&T的iPhone事件開始展開調查,並且計畫禁止行動通訊公司利用封包延遲的手法,來妨礙網路電話服務的提供,以確立其網路中立的立場。以目前來看,這樣的行動與計畫將嚴重打擊行動通信公司的收益,畢竟行動通信公司以客戶的通話費與簡訊費為其主要獲利來源,但是從另一方面來說,消費者可以透過Skype、Google Voice等網路電話服務,來節省其通話與簡訊費,因此FCC此項計畫獲得消費者團體的支持。FCC的計畫預計將引領未來數位匯流發展一個初步的方向,而FCC擬於十月會議中提出相關的規則草案,確定的規則公告預計會在明年春天發布。
德國聯邦議院通過能源效率法,節能目標將入法德國聯邦議院於2023年9月21日通過《能源效率法》(Energieeffizienzgesetz, EnEfG)草案,確立德國能源效率目標,並規範公部門及企業的具體效率措施,及首次定義資料中心的能效標準,本法並要求德國2030目標應符合歐盟能源效率指令(EU Energy Efficiency Directive, EED)。預計聯邦參議院將在10月底審議該法律,之後將盡快生效。本次修法重點如下: 1.能源效率目標:EnEfG規定2030年德國減少初級和最終能源消耗的目標,以及2045年減少最終能源消耗的目標。以最終能源消耗而言,此代表著2030年減少約500TWh(與目前水準相比)。未來,聯邦政府將在立法期開始時,定期向聯邦議院通報目標實現情況,並在必要時決定調整工具組合。 2.聯邦及各邦的節能義務:從2024年起,聯邦政府和各邦政府有義務採取節能措施。至2030年,聯邦及各邦的最終能源消耗每年各分別節省45TWh和3TWh。 3.公部門在節能減排方面樹立榜樣:為了使聯邦和邦層級的公部門在提升能源效率方面能做為表率,未來將導入能源或環境管理系統。此外,EnEfG也規定節能措施的實施,目標是每年最終能源消耗減少2%。 4.企業能源或環境管理系統:EnEfG要求能耗較大(超過平均7.5GWh)的企業導入能源或環境管理系統,最終能源消耗總量為2.5 GWh以上的企業,則需要在實施計畫中,記錄和公布節能措施。此種作法不僅提高能源消耗的透明度,同時也讓企業可自行決定導入哪些措施以及預計的成果。 5.資料中心的能源效率及餘熱要求:新的資料中心應遵守能源效率標準,還必須利用餘熱(Abwärme)。未來,所有大型資料中心營運商應使用再生能源電力,並於公共登錄冊中記載能源消耗的資訊,以及向客戶告知其具體能源消耗狀況。 6.餘熱的避免與利用:未來應盡可能避免生產過程中產生餘熱。如果無法避免,則應利用餘熱。此外,有關企業餘熱潛力的資訊將綁定並公布在一新平台上。