瑞士聯邦委員會(The Swiss Federal Council)於2022年11月23日發布氣候揭露規則(L'ordonnance relative au rapport sur les questions climatiques),旨在補充《瑞士債法典》(Code des Obligations)企業非財務資訊揭露義務之標準,要求瑞士大型企業呈現明確、可供比較的氣候資訊,並於2024年1月1日起生效。 依照《瑞士債法典》第32章第6節「非財務事項之透明度(Transparency on Non-Financial Matters)」規定,擁有500位以上員工,且資產負債表總額為2000萬瑞士法郎以上或營業額超過4000萬瑞士法郎之上市公司、銀行和保險公司(下稱大型企業)每年應揭露非財務資訊。氣候揭露規則就此進一步補充該章節的內容,要求大型企業依照國際公認標準揭露氣候資訊,要點如下: (1)明定包括氣候對大型企業造成的影響與企業活動對氣候造成的影響在內的資訊,皆應於大型企業的非財務資訊報告中公布。 (2)將氣候相關財務揭露工作小組(Task Force on Climate-related Financial Disclosure, TCFD)公布之「TCFD建議書(Recommendations of the Task Force on Climate-related Financial Disclosures)」與附件「TCFD建議書之實施(Implementing the Recommendations of the Task Force on Climate-related Financial Disclosures)」納為瑞士大型企業氣候揭露標準,包括治理、戰略、風險管理及關鍵指標與目標四項主題,並應留意建議書「適用所有部門(all-sectors)」與「個別部門(certain sectors)」之指引。 (3)如未依規定揭露者,則應說明其遵循氣候揭露義務的其他方式,或說明無須遵循的正當理由。
歐洲央行提出7500億歐元之「緊急債券收購計畫」以因應新冠肺炎疫情歐洲央行(European Central Bank, ECB)於2020年3月18日提出7500億歐元之「緊急債券收購計畫」(Pandemic Emergency Purchase Programme),紓困金額占歐盟年GDP之7.3%,以協助歐盟面臨新型冠狀病毒(covoid-19)所帶來之經濟衝擊,同時也減緩再生能源產業因疫情所帶來之影響。 就此,歐洲央行總裁Christine Lagarde表示,對於紓困對象及方法,歐洲央行將採取不分產業類別自市場購買公債或私人債券之方式,以因應疫情所帶來之影響,其中也包含歐盟投資銀行(European Investment Bank, EIB)所發行之「綠色債券」(Green Bond)。又綠色債券係歐盟投資銀行於2007年所發行,又名「氣候意識債券」(Climate Awareness Bond),職是故,歐洲央行針對歐盟投資銀行綠色債券進行紓困將使再生能源產業蒙受其利。 依歐洲央行之「緊急債券收購計畫」,歐洲央行僅得自次級市場(Secondary Market)購買債券,而不得直接自初級市場(Primary Market)購買,亦即歐洲央行僅得自價證券買賣之交易市場購買債券,而不得直接購買首次出售之有價證券,此項限制,也包含歐盟投資銀行所發行之綠色債券。 以歐盟投資銀行綠色債券為例,歐洲央行之操作機制在於透過此項購買手段,提升歐盟投資銀行綠色債券之市場價格,同時讓歐盟投資銀行面對投資人時,可以享有較為優渥之議價空間,以降低歐盟投資銀行未來所要付給投資人之利率。同時歐洲央行可再進一步降低對於歐盟投資銀行之利息,進一步降低歐盟投資銀行因發行綠色債券所帶來之利息壓力,促使綠色產業得以因應疫情之衝擊。 如此歐洲央行即達成其目的,減緩投資市場之震盪,同時達到振興經濟產業效益。這也是為何,歐洲央行僅得自次級市場(Secondary Market)購買債券,而不得直接自初級市場(Primary Market)購買債券之原因。
FTC提供意見給NHTSA有關隱私權和車輛對車輛通訊(V2V)美國聯邦貿易委員會(FTC)針對國家公路交通安全管理局(NHTSA)的行政命令提出建議,就有關車輛到車輛通信(V2V)之事宜,FTC長期作為負責保護消費者隱私與安全的聯邦機構,FTC認為NHTSA在行政命令中採取隱私和安全問題考慮是非常適當。 在FTC的建議評論指出,FTC針對物聯網的的資訊安全疑慮,同樣也會適用在消費者的車輛收集的隱私和安全問題。FTC認為NHTSA的協商支持作法,基於流程的可解決隱私和安全隱患,其中包括隱私風險評估。該評論還讚揚NHTSA設計一個V2V系統來限制收集和存儲僅是供應其預期的安全目標的數據。 美國每年都會有上千人意外死於汽車意外事故,NHTSA研究指出,汽車相撞的原因多數情況下在於資訊的不透明,如果汽車之間可以「相互溝通」,讓駕駛彼此知悉對方的情況,就能減少碰撞事故。 「V2V」係指vehicle-to-vehicle,是規劃建立於汽車之間的通信網路。在這個網路中,汽車之間能夠互相傳送數據,告訴對方自己的狀態和行為,也了解其他車輛的狀態和行為。但是目前V2V各家發展的標準不一,因此假設福特的車如果不能跟其他廠商的汽車溝通,技術再好也沒用。 也因此,NHTSA在官網上公告規則,宣布將制定「V2V」通信技術標準的法規。也就是說,NHTSA將要制定一個統一的標準,來確保汽車之間溝通使用的是同一種語言。在最新的一份報告中,NHTSA詳細說明了「V2V」通信技術的軟硬體標準。它包括部署該項技術可能需要的硬體設施及其費用,汽車之間溝通的資料類型,以及該技術將如何提醒司機。此外,還覆蓋了「V2V」通信技術的安全細則,以及它將如何加密以避免竊聽和侵犯隱私。 在使用者和廠商都關心的資料外洩方面,NHTSA表示,資料本身將不包含個人身份資訊,並且將會被保密。目前提出的方案裡包含兩套數據,其中一個包含核心資訊:如位置、速度、駕駛方向、剎車狀態、車輛尺寸等。這些資料將即時更新並相互傳播。第二套數據則會更加複雜,只有在數據發生變化時才會相互傳輸。它包括汽車輪胎是否漏氣,前燈是否打開,保險杠的高度,是否行駛在密集人群中等。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。