曾開發「暴雪英霸」、「暗黑破壞神」、「魔獸世界」等多款人氣電玩遊戲的暴雪娛樂公司(Blizzard Entertainment, Inc.)素來對遊戲中的作弊外掛程式採取嚴厲的打擊手段。暴雪娛樂日前對於「暴雪英霸」遊戲中的外掛全自動機器人程式(cheating bot)採取行動,對外掛程式開發公司德商Bossland GmbH的開發者James Enright及數名匿名工程師提出著作權侵權訴訟,並指控其外掛程式讓玩家在遊戲中作弊,影響遊戲的公平性及其他玩家的娛樂,而且損及暴雪娛樂公司的獲益。James Enright最後與暴雪娛樂達成協議,交出外掛程式的原始碼。
隨後,Bossland GmbH公司控訴暴雪娛樂公司偷走他們的原始碼。Bossland GmbH的執行長Zwetan Leschew表示,James Enright所交出外掛程式原始碼的智慧財產權屬於Bossland GmbH公司,James Enright是Bossland GmbH公司的自由程式開發者,暴雪娛樂公司已經於德國參與了數個對自動機器人程式開發者的訴訟,對於James Enright與Bossland GmbH之間的關係應有所了解。從暴雪娛樂公司和James Enright的協議可以看出,暴雪娛樂公司要求James Enright將程式原始碼交出,以換取訴訟的停止。
暴雪娛樂公司發布聲明表示,暴雪娛樂已在德國贏得了多起與Bossland GmbH公司的訴訟,儘管他們利用策略手段來拖延正在進行的訴訟程序,仍堅信法院制度會繼續證實我們的主張,而且最終會阻止作弊全自動機器人程式的散布。
美國國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)於2022年9月9日公布2022年最新版本之當代車輛網路安全最佳實踐(Cybersecurity Best Practices for the Safety of Modern Vehicles),強化政府對先進聯網車輛網路安全之把關。 文件將網路安全實踐項目區分為「一般網路安全最佳實踐」及「車輛技術網路安全最佳實踐」兩塊,前者主要為公司整體組織網路安全文化與監管機制之建立;後者則偏重於技術性的建議內涵。 「一般網路安全最佳實踐」共有45項要點,核心概念為:公司應訂定明確的網路安全評估程序,由領導階層負責相關監督責任,定期執行網路安全之風險評估及第三方公正稽核,並對其所發現之風險弱點採取保護措施並持續監控,同時應妥善保存所有網路安全相關之紀錄文件,並鼓勵與車輛同業聯盟彼此分享學習經驗。對於組織成員應適當提供網路安全教育訓練。於產品設計時,應將產品使用者、售後服務維修商,以及可能的外接式電子設備所帶來之風險一併納入安全設計考量。 「車輛技術網路安全最佳實踐」共有25項,核心理念為:對於產品開發人員,應建立存取權限管理,避免有心人士濫用權限。產品所使用的加密技術應隨時更新,若車輛具備診斷功能,應慎防遭到不當利用,且應防止車輛所搭載之感測器遭到惡意干擾或改動,感測器所收集到之資料則應能免於網路攻擊或竊取。應特別注意無線網路設備、空中軟體更新(Over-the-air, OTA)以及公司作業軟體所產生之風險漏洞。 本文件屬於自願性質,無法律強制力。但NHTSA期望在現有的車輛產業網路安全標準上,例如國際標準組織與國際汽車工程師協會(International Standards Organization, ISO/SAE International, SAE)先前所訂定的車輛網路安全標準ISO/SAE 21434的基礎前提下,進一步提出政府對車輛網路安全要求的努力。
美國最高法院明確放寬專利權耗盡原則之適用範圍美國最高法院於2017年5月30日針對Impression Products v. Lexmark International作出最終裁決,說明當專利權人銷售專利產品時,無論在美國境內或境外,專利權人不能再以美國專利法來限制該專利產品,一經銷售後該產品專利權已經耗盡。 本案起因為美國印表機研發製造大廠Lexmark推出兩項碳粉匣方案:原價碳粉匣,無任何轉售限制;以及優惠碳粉匣,並附帶「一次性使用」(single use)及「不得轉售」(no resale)限制條款,消費者不得自行填充再利用、再轉售或轉讓給原廠以外的第三方。本案專利權人Lexmark控告同業Impression侵害其權利(違反一次性使用及不得轉售),被告Impression則主張兩項碳粉匣產品的專利權在美國境內的首次銷售後就已耗盡了。該案爭點包含:(一)專利產品在境外首次授權或銷售,是否導致專利權耗盡;(二)專利權人訂立售後限制條款,可否用以追究當事人違反限制條款責任? 地院引述最高法院過去兩個判例(Quanta案及Kirtsaeng案),裁定Lexmark專利產品因首次授權銷售情形而權利耗盡。原告Lexmark提出上訴,CAFC則認為專利產品在境外銷售情形,不會導致專利權人在境內專利權耗盡,且在首次銷售時給的授權,已經合法限制再銷售或再使用,故Impression仍構成專利侵權。 最終,最高法院推翻CAFC見解,認為無論是專利權人直接銷售,或是對專利產品加諸任何限制,專利權人決定銷售產品時,該產品相關的專利權就會耗盡。另外最高法院亦指出,當專利權人透過契約與購買者約定,限制其使用或轉售的權利,其在契約法上或許有效,但在專利侵權訴訟中則沒有用。本案後,最高法院確立採國際耗盡原則,說明專利權人在全球任何地方,產品經銷售後即權利耗盡,無論專利權人是否有任何售後限制。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
美國數州將就大麻合法化與否舉行公民投票美國總統選舉於11月8日舉行,數州針對大麻合法化與否一併進行公民投票,針對娛樂用大麻(Recreational Maijuana)議題舉辦公投共有五州,分別為加州、內華達州、亞里桑那州、緬因州以及麻州;而針對醫療用大麻(Medical Marijuana)議題舉行公投則有四州,係佛羅里達州、阿肯色州、北達科他州以及蒙大拿州,其中蒙大拿州原已開放醫療用大麻,本次公投案係放寬現行法規之限制。公投結果顯示,除亞里桑那州公投案未通過外,其餘各州公投案皆已通過。 民調公司蓋洛普(Gallup)於十月公布之民調顯示,美國民眾支持大麻合法化比例,已從1969年的12%爬升至目前的60%。本次各州公投案通過後,將對美國聯邦政府近80年的大麻禁令產生極大壓力。就經濟層面觀察,美國研究機構ArcView Market Research研究報告統計,全美目前合法管道銷售大麻金額從2014年的46億美元成長至54億美元,而作為全美最大經濟體的加州,依投資分析公司Cowen and Company分析,該州本次公投案通過將使全美大麻產業成長三倍,甚至於2026年市場規模將成長至500億美元。大麻合法化後,依「加州大麻業者協會」(California Cannabis Industry Association)估計,將為加州州稅增加十億美元的收入。根據統計,此一趨勢中,推動大麻合法化一方投入約兩千兩百萬美元支持加州公投案,而反對方則投入約兩百萬美元。
美國商務部國家電信和資訊管理局呼籲透過第三方評測提高AI系統透明度2024年3月27日,美國商務部國家電信和資訊管理局(National Telecommunications and Information Administration, NTIA)發布「人工智慧問責政策報告」(AI Accountability Policy Report),該報告呼籲對人工智慧系統進行獨立評估(Independent Evaluations)或是第三方評測,期待藉此提高人工智慧系統的透明度。 人工智慧問責政策報告就如何對人工智慧系統進行第三方評測提出八項建議作法,分別如下: 1.人工智慧稽核指引:聯邦政府應為稽核人員制定適合的人工智慧稽核指引,該指引須包含評估標準與合適的稽核員證書。 2.改善資訊揭露:人工智慧系統雖然已經應用在許多領域,但其運作模式尚缺乏透明度。NTIA認為未來可以透過類似營養標籤(Nutrition Label)的方式,使人工智慧模型的架構、訓練資料、限制與偏差等重要資訊更加透明。 3.責任標準(Liability Standards):聯邦政府應盡快訂定相關責任歸屬標準,以解決現行制度下,人工智慧系統造成損害的法律責任問題。 4.增加第三方評測所需資源:聯邦政府應投入必要的資源,以滿足國家對人工智慧系統獨立評估的需求。相關必要資源如: (1)資助美國人工智慧安全研究所(U.S. Artificial Intelligence Safety Institute); (2)嚴格評估所需的運算資源與雲端基礎設施(Cloud Infrastructure); (3)提供獎金和研究資源,以鼓勵參與紅隊測試的個人或團隊; (4)培養第三方評測機構的專家人才。 5.開發及使用驗證工具:NTIA呼籲聯邦機關開發及使用可靠的評測工具,以評估人工智慧系統之使用情況,例如透明度工具(Transparency Tools)、認驗證工具(Verification and Validation Tools)等。 6.獨立評估:NTIA建議聯邦機關應針對高風險的人工智慧類別進行第三方評測與監管,特別是可能侵害權利或安全的模型,應在其發布或應用前進行評測。 7.提升聯邦機關風險管控能力:NTIA建議各機關應記錄人工智慧的不良事件、建立人工智慧系統稽核的登記冊,並根據需求提供評測、認證與文件紀錄。 8.契約:透過採購契約要求政府之供應商、承包商採用符合標準的人工智慧治理方式與實踐。 NTIA將持續與利害關係各方合作,以建立人工智慧風險的問責機制,並確保該問責報告之建議得以落實。