美國政府於2015年10月公告美國創新戰略最新版本

  美國創新戰略(A Strategy for American Innovation)於2009年9月首次提出,後於2011年2月配合時事及產業發展增補內容。隨著政策的逐步推行,美國國家經濟委員會及白宮科技政策辦公室於2015年10月公布最新版本之美國創新戰略,在原有的框架增補更多內容成為六大重要施政要項,在策略佈局上又大致可分為創新資源整合的三大創新基礎以及三大策略發展方向,前者包括:(1)投資創新基石;(2)刺激私部門進行創新活動;(3)營造一個創新者國度。後者的三大策略發展方向則包括國家產業重要優先發展領域的技術突破,其影響意味著確定重點投資領域能夠取得變革性結果,以滿足國家和世界所即將面臨的社會議題挑戰。其中諸如精準醫療(precise medicine)、加速發展新型神經技術、推動衛生保健的突破性創新、採用先進車輛減少死亡事故、建設智慧城市、推動再生能源技術提高能源效率、開發先進教育技術、發展太空科技等。

  其次,係藉由投資未來產業,建設包容性創新經濟,加強美國先進制造的領先地位,創造工作機會和經濟的持續成長。最後,借助於人才、創新思維及技術工具的適當組合,建設創新型政府,為民眾提供更好的行政服務。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國政府於2015年10月公告美國創新戰略最新版本, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7081&no=64&tp=1 (最後瀏覽日:2026/01/09)
引註此篇文章
你可能還會想看
日本國土交通省公布「無人機載運貨物指引2.0」,加快物流無人機應用

  日本國土交通省(国土交通省)於2021年6月25日公布「無人機載運貨物指引2.0」(ドローンを活用した荷物等配送に関するガイドラインVer.2.0)。2021年3月公布之「無人機載運貨物指引1.0(法令編)」(ドローンを活用した荷物等配送に関するガイドラインVer.1.0(法令編))係針對涉及之相關法令進行彙整,而本次則聚焦於應用方面進行詳細說明。   本指引首先於第一編指出,在引進物流無人機前,業者應先盤點該地區存在的課題,並確認無人機是否能有效解決該問題,接著嘗試提出具體解決方案,如拉長無人機飛行距離、增加使用次數,或建立可多次往返的飛行航道以增加使用頻率等。在初步確立無人機業務藍圖後,業者尚須設定物流無人機服務之目標受眾,並聯繫可提供貨物之商店及無人機業者,著手建立相關服務之運作模式。此外,為順利推動物流無人機服務,還需提高民眾對物流無人機之社會接受度,以獲得當地居民的理解及支持。最後,為確保飛航安全,業者除遵守本指引第二編所列相關法令飛行外,亦應制定安全飛行操作手冊,審慎評估起降地點之安全性,並建立一套安全管理系統。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

南韓司法單位擬懲處黃禹錫等四人

  去(2005)年11月,全球幹細胞研究先驅-韓國首爾大學黃禹錫(Hwang Woo-suk)教授承認其研究有國際醫學倫理瑕疵,引發軒然大波。其後,相關的醜聞頻傳,黃教授更被控研究造假,使得原本以前瞻之胚胎幹細胞研究技術(即體細胞核轉置技術”somatic cell nuclear transfer”)獨步全球的韓國科學界,研究信譽遭受嚴重打擊。   偵辦「黃禹錫科研論文造假醜聞案」的南韓檢察當局,經連日傳訊相關人員後,正考慮對黃禹錫等四人採取司法懲處。 對於被查出不法獲得並使用科研用卵子的黃禹錫,檢方考慮依據違反「生命倫理及安全之法律」等條文予以懲處。   據指出,檢方在調查中,掌握了2004年及2005年刊登在「科學」雜誌上的科研論文,黃禹錫等人捏造體細胞複製幹細胞,和為病患複製培育胚胎幹細胞的科研數據,矇騙了整個科學界。調查顯示,黃禹錫去年十一月檢驗幹細胞的遺傳基因(DNA)指紋之前,似乎真的不曉得根本就不存在為病患量身打造複製培育胚胎幹細胞的事實。但檢方卻證實黃禹錫確實指示屬下研究員,將部分照片等科研數據和資料,自我膨脹等造假的事實。   由於生醫研究給許多病患帶來新的治療希望,因此其通常會以實際行動(即自願捐贈研究用檢體、協助經費募集等)表達支持。惟研究瑕疵或造假則會讓病患及一般民眾認為遭受欺騙,進而影響其未來捐贈檢體或以受試者身份參與生醫研究之意願。可見生醫倫理並不僅是道德呼籲,也是生醫研究能否順利進行、生醫研究能否生根發芽的重要基石。 黃禹錫案之相關報導可參見 The Economists, December 3 rd 2005, p. 71; The Economist, December 24 th 2005, p. 109-110

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP