硬碟製造商日立全球儲存科技公司(Hitachi Global Storage Technologies)聲明該公司已於2004年12月28日於北加州地方法院對中國大陸硬碟製造商南方匯通微型硬碟科技股份有限公司(GS Magicstor of China)及其位於加州Milpitas之聯合研究機構GS Magic and Riospring of Milpitas, CA提起專利侵權訴訟,主張南方匯通侵害日立對於生產硬碟所擁有的多項專利權,並希望獲得財產上損害賠償並永久禁止GS Magic繼續於美國製造、利用、進口、販售該侵權產品,求償額度目前尚未公佈。
日立所生產的一吋硬碟已被裝配於Apple的iPod Mini MP3隨身聽,該公司更計畫於今年開發更小的微型硬碟。
2018年英國頒布電子通訊之網路與資訊系統規則(The Network and Information Systems Regulations 2018),該規則實施歐盟2016年網路與資訊系統安全指令(Network and Information Security Directive, NIS Directive)。該規則分成幾個部分,第一部分是介紹性條文,例如介紹網路及資訊系統之定義:「(a)2003年通訊法(Communications Act 2003)第32條第1項所指的電子通訊網路;(b)一組或多組互聯或相關設備,其中之設備或程序根據程式自動化處理數位資料;(c)為操作、使用、保護和維護目的,由(a)或(b)款所涵蓋的儲存、處理、檢索或傳輸的數位資料。」 第二部分是英國政府相關組織架構規定,包括網路及資訊系統的國家政策(The NIS national strategy)、國家權責機關的指定(Designation of national competent authorities)、單一聯絡點的指定(Designation of the single point of contact)、電腦安全事件應變小組的指定(Designation of computer security incident response team)、執行機關的資訊分享(Information sharing–enforcement authorities)、北愛爾蘭的資訊分享(Information sharing–Northern Ireland)。 第三部分則是基本服務營運商(類似於我國的關鍵基礎設施營運商)與其職責,包括基本服務營運商的確定、營運權廢止、基本服務營運商的安全維護職責、事故通報的責任等。根據第8條第1項之規定,如果營運商提供本規則附表2所載明的基本服務(包括電力、石油、天然氣、航空運輸、船務運輸、鐵路運輸、公路運輸、醫療健康、數位基礎設施等),並且符合基本服務一定門檻要求者,則該廠商即被視為基本服務營運商(operator of an essential service, OES)。舉例而言,規章之附表2第1項載明,營運商提供電力供應之基本服務者,其一定門檻要求包括:若營運商位於英國,符合「為英國國內超過25萬名消費者提供電力服務」或「輸電系統的發電量大於或等於2 gigawatts」之條件者,該營運商即為基本服務營運商(OES);若營運商位於北愛爾蘭,則應「依據北愛爾蘭1992年的電力法規命令取得供電執照」,且「為北愛爾蘭境內超過8千名消費者提供電力服務」,或符合「發電量大於或等於350 megawatts」等條件,則該營運商即為基本服務營運商(OES)。 再者,若營運商符合第8條第3項所列之條件,則可由主管機關指定為基本服務營運商(OES)。此外,主管機關可根據第9條撤銷基本服務營運商(OES)的認定,基本服務營運商(OES)必須履行第10條規定的安全維護責任,並對於第11條規定的事件負有事故通報的責任。 第四部分則是數位服務,包括相關數位服務提供者、成員國跨境合作與行動、向資訊專門委員進行登記(Registration with the Information Commissioner)、資訊通知(Information notices)、檢查權限、違反義務之強制執行、裁罰、對行政機關裁罰決定之獨立審查、罰鍰之執行、費用、裁罰程序、執法行為的一般考量因素、審查與報告。
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)
歐盟議會要求禁止將複製動物作為食品伴隨著歐洲食品安全局公開一項經高度謹慎評估關於複製動物在食品安全、動物健康和環境等方面關聯性之科學意見後;歐洲議會隨即於2008年9月3日邀集委員會召開討論會議,並於該會議中遞交出有關於禁止將複製動物作為食品之建議案。透過表決,在622票贊成、25票棄權與32票反對之壓倒性決議下,議會通過了該項建議案。 該項禁令建議案要求歐盟境內各會員國應禁止:(1)以複製動物作為食物之來源、(2)為糧食供應目的而進行畜養之複製動物或其繁殖之子代、(3)於市場上販售經由複製動物或其經繁殖之子代所衍生之食用肉品與乳製品;以及(4)禁止以食用為目的自境外進口複製動物與其經繁殖之子代(包括精子或卵子細胞)等行為。 而EFSA也發現:「不太可能達成全面性食品安全之評估工作」,故對於缺乏可靠數據資料而需進行評估之主體而言,在進行風險評估時,其仍將會不斷地被不確定性問題所困擾;同時,EFSA在該報告中還強調:透過比對複製動物與經傳統育種繁衍之動物後,其也將面臨「於動物健康及福利方面等重要爭議問題」。另外,歐洲議會成員指出:將透過歐盟農場動物保護指令中,有關禁止任何可能引起痛苦或傷害之自然或人為育種繁殖過程之規定,作為該項禁令之法律授權依據。 截至目前為止,尚未有任何由複製動物所衍生之產品在歐洲或者世界其它地方被銷售;不過,由於美國食品藥物管理局(FDA)早在2008(今)年1月份時即做出結論,認為:由複製牛、豬、山羊與其子代所產生之肉品與牛奶,其安全性與食用從傳統育種動物所衍生之食品並無二致。因此,專家們咸信,此類產品將會於2010年時正式進入市場販售;而在歐洲方面則更進一步認為,日後在處理複製動物食用之問題上,應要兼顧到動物福利之保護與獲得廣大消費者之信賴。
芬蘭Skene計畫聚焦電玩遊戲產業依據統計,2011年全球電玩遊戲產值約516億歐元,是娛樂產業中成長最快速的領域,行動遊戲(mobile gaming)也因智慧型手機普及率之提升,在其中扮演舉足輕重的角色。有鑒於此,芬蘭政府於今(2012)年啟動Skene-遊戲補給計畫(Skene-Game Refueled,以下簡稱Skene計畫)促進其遊戲產業的研發創新。 Skene計畫預計從今(2012)年起實施至2015年,將投入7000萬歐元資金補助,其中3000萬歐元由芬蘭的創新補助機關-國家技術創新局(teknologian ja innovaatioiden kehittämiskeskus,Tekes)提供。該計畫致力於創造國際級遊戲及娛樂聚落的形成,期能使芬蘭企業成為國際遊戲產業生態中的重要成員。芬蘭政府欲藉由此一計畫,突破芬蘭Rovio公司過往開發「憤怒鳥」(angry bird)遊戲之偶發性的成功模式,讓芬蘭遊戲產業獲得長期永續的商業效益。Tekes於本計畫中特別強調知識分享的重要,認為此計畫的核心目的在於促進相關知識或經驗,得以在研究機構的專家、遊戲公司乃至其他產業間有系統的傳遞。 事實上芬蘭推動Skene計畫之動機,除了著眼於遊戲產業本身所帶來的龐大商業效益外,也看到遊戲開發過程中產出工具在其他產業之模型、模擬實驗、使用者介面設計及傳統軟體開發方面之助益(例如在醫療照護產業、運算服務之運用或協助教育環境建構或運動訓練等)。由此觀之,芬蘭政府透過Skene計畫推動遊戲產業研發創新之考量,尚包括帶動其他產業之提升的深遠思考。 近年來我國遊戲產業在商業上的表現逐漸受到各界重視,在此背景下,芬蘭Skene計畫無論在具體作為及其背後的思維模式上,皆有我國可以參考借鏡之處。