競業禁止新方向-「勞資雙方簽訂離職後競業禁止條款參考原則」

刊登期別
第27卷,第11期,2015年11月
 

※ 競業禁止新方向-「勞資雙方簽訂離職後競業禁止條款參考原則」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7112&no=55&tp=1 (最後瀏覽日:2026/02/07)
引註此篇文章
你可能還會想看
美國生技學名藥法案不利廉價藥品供應

  近來國際藥商逐漸將研發眼光放在市面上既存的蛋白質生技學名藥(follow-on biologics, Biosimilar, Biogenerics)上,顧名思義,生技學名藥乃是仿製市面上的生技藥品,而在臨床效用上與所仿製的藥品完全一樣或只是做些微調整改良。   目前生技學名藥並無法適用Hatch-Waxman Act下之「簡易新藥申請」(Abbreviated New Drug Application,ANDA)程序,原因在於生技製藥通常為複雜的大分子,難以確認其與上市產品100%相同,故美國FDA採取另立新法管理的態度,但迄今仍未通過任何法律。在歐盟,由歐洲藥品管理局(European Medicines Agency)所發布的生技學名藥核准準則只要求藥商提出其分子具有與上市藥品相同之物理特性及毒性安全數據即可上市,故現行已有少部分生技學名藥在歐洲上市。   因而藥商在無簡易上市的程序下,只能循完整的臨床有效性試驗程序。事實上這與現行美國擬對生技學名藥上市管理所提出的法律草案內容一致,目前提出於國會山莊的三個法律草案版本(Sen. Ted Kennedy’s S.1695, Sen. Judd Gregg’s S.1505 & Rep. Anna Eshoo’s H.R.5629)皆強制大部分生技學名藥上市前必須經過完整的臨床有效性試驗。   相反的,傳統學名藥在自1984年的Hatch-Waxman Act以來,並無需進行最昂貴的第二及第三階段之臨床試驗,也因此對於病患、消費者等而言,生技學名藥價格並不友善,通常只比其所仿製的上市藥品便宜一至二成,在有市場利基的功用調整下則有可能更貴;這比起競爭激烈的學名藥價格動輒較其原始藥品便宜五成以上相去甚多。並且所費不貲的臨床實驗亦將使生技學名藥只有擁有龐大資源的少數大藥廠能取得入場門票,因此專家預估生技學名藥的立法並不會像Hatch-Waxman Act一樣,進而形成生技學名藥業(generic biotech industry),而是形成所謂的生技仿製業(me-too industry)。

論政府資料探勘應用之個人資料保護爭議

日本內閣閣議決定2023年度朝向數位社會實現之重點計畫,強化活用數位技術之法規整備

2023年6月9日,日本內閣閣議決定2023年度「朝向數位社會實現之重點計畫」(デジタル社会の実現に向けた重点計画)。該計畫是針對數位社會之實現,明確記載日本政府應迅速且重點性實施的政策及各行政機關於整體社會結構改革(こうぞうかいかく)、個別施行政策之努力,並做為日本向世界提出建言時的羅盤。 其中,值得關注的是日本對於為活用數位技術所做之法規整備。根據2022年12月日本數位廳轄下的數位臨時行政調查會(デジタル臨時行政調査会)的調查,確認與實地檢查、定期檢查、文件閱覽等相關之法律條文內含過時概念,以致於會對數位轉型之發展造成阻礙的條文(下稱過時法律)約有一萬條。對此,數位臨時行政調查會表示,數位改革與法律改革之間的關係為一體兩面,為了最大化發揮數位化的效果,法律改革的相關檢討亦應一併執行。各法律之相關行政機關應依照「基於數位原則對過時法律所作之修正工程表(デジタル原則を踏まえたアナログ規制の見直しに係る工程表)」對各過時法律做出相關檢討,並以2024年6月修正各過時法律為目標。 舉例來說,為實現民事判決的全面數位化,2022年5月18日,日本參議院通過了民事訴訟法等法律的部分修正案,其中最值得關注的部分為當事人可以透過網路向法院提起訴訟、提出準備資料,以及透過網路受領法院送達之相關訴訟文書等。該修正案亦包含訴訟中程序之修正,以言詞辯論程序為例,當事人可透過線上會議之方式進行言詞辯論程序,惟施行期間預計於公告後2年內開始實施。 台灣於2015年7月就智慧財產行政訴訟事件正式啟用線上起訴系統,同年9月開放稅務行政訴訟事件使用,並於2016年開放民事訴訟事件使用。該系統與日本體系不同之處在於,日本目前僅就民事訴訟事件開放線上起訴系統之使用。不過,日本2022年針對刑事訴訟法數位化之部分做出相關報告書,可預期日本將來也會將線上起訴及審理系統導入刑事訴訟法之領域。未來可以持續觀察日本就線上起訴及審理系統之訂定及政策施行方向,作為我國之參照。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP